
Scientific Computing / Calcolo Scientifico∗

Lecture notes

academic year 2023/24

These lecture notes cover the topics of the Scientific Computing course
taught in the academic year 2023/24, for the Bachelor and Master degrees in
Mathematics of the University of Pisa. The reference book for the course is
“Applied Numerical Linear Algebra” by Demmel [1].

1 Introduction

The aim of this course is developing effective numerical strategies for the solution of two
classes of problems, often encountered in applications:

Linear systems of the form Ax = b, where A is either square and invertibile, or given
as the least square problem min ∥Ax− b∥2, with A rectangular and not necessarily
full rank.

Eigenvalue problems of the form Av = λv for some v ̸= 0. Sometimes, all the eigenval-
ues and eigenvectors are sought. In other cases, only some of them are relevant.
Examples include the ones with largest or smallest modulus, or enclosed in some
region Ω ⊆ C.

These two problems may look different at first sight, but they share several common
features. In both cases we need to differentiate our approach for problems that are
“small” or “large”. In the former case, so-called direct methods will be applicable.
In the latter, when the matrix A is so large that it is impossible to store unless it has
some particular structure, we will need to employ projection techniques to reduce the
dimensionality of the problem. The methods in the latter class are known as iterative
methods.
This classification may look as an over-simplification of the classes of problems that

can be encountered in applications: what about optimization, or the solution of partial
differential equations? And nonlinear problems?
A closer look reveals that linear systems and eigenvalue problems are really at the

foundation of computational mathematics: optimization leads to KKT conditions (and
therefore solving a linear system, or a sequence of them), PDEs are often treated with
finite element methods, and requires solving linear systems or computing extremal eigen-
values. Dealing with nonlinear problems with Newton-Rhapson requires solving sequence
of linear systems with the Jacobian matrix.

∗Revised on May 21, 2024. Mistakes and typos may be reported by writing to stefano.massei@unipi.it
or leonardo.robol@unipi.it.

1

mailto:stefano.massei@unipi.it
mailto:leonardo.robol@unipi.it

2 Nonsymmetric eigenvalue problems

The (standard) eigenvalue problem can be stated as finding all scalars λ such that
Av = λv, for some v ̸= 0; quite often, we are interested in the right or left eigenvectors
as well. Since the first lectures in linear algebra, we know that the problem can be recast
as computing the roots of the characteristic polynomial:

p(λ) := det(λI −A).

This characterization may lead to a first tentative algorithm for computing the eigen-
values of a matrix A:

1. Determine the polynomial p(λ) by computing the determinant (this is doable via
a variant of the LU factorization).

2. Use some functional iteration for computing all the roots.

3. If the eigenvectors are needed as well, compute them by finding a basis for the
kernel of A− λI.

This approach, while theoretically sound, has several “numerical” shortcomings.
We can implement this “poor man’s eigenvalue solver” in a few lines of MATLAB,

taking advantage of the functions poly and roots, which compute the characteristic
polynomial of a matrix A and its roots, respectively.

function [e] = poor_mans_eig(A)

% Coefficients of the characteristic polynomial

p = poly(A);

% Compute the roots

e = roots(p);

end

For now, we ignore the details on how MATLAB computes the roots of p(λ): it is
enough to know that the computation is carried out as stably and accurately as possible
(we’ll get back to this later). Let us test our implementation on a simple example.

>> A = diag(1 : 20); % The eigenvalues are the integers from 1 to 20

>> e = poor_mans_eig(A)

e =

20.0000

18.9994

18.0033

16.9882

16.0262

[...]

2

Arguably, this is the simplest possible eigenvalue problem: we are computing the eigen-
values of a diagonal matrix, which can just be read off the diagonal. How can our method
be so inaccurate?

The answer to this matter is subtle yet fundamental for the development of stable
numerical methods. What we are doing is transforming one problem into another (an
eigenvalue problem into a polynomial rootfinding one), through some map Γ:

Γ : Cn×n → C[λ]

∈ ∈

A 7→ det(λI −A)
.

We cannot guarantee that small perturbations in the inputs data of one problem will
correspond to small perturbations in the input data of the other: small variations in the
coefficients of p(λ) may cause large changes in the entries of the original matrix A.
Since we work with floating point arithmetic, introducing roundoff errors is inevitable:

we need to make sure that any algorithm that we develop is stable under perturbations,
and therefore construct a meaningful perturbation theory to analyze them.

2.1 Perturbation theory for eigenvalue problems

We shall now study the effect of perturbations on the spectra of matrices. This topic is
closely related with the condition number.

Definition 2.1.1. Let A be an n × n matrix, and λ an eigenvalue in Λ(A); then, the
condition number of λ, denoted by κ(A, λ), is defined by

κ(A, λ) := lim
h→0

sup∥δA∥≤hmin
{
|µ− λ| | µ ∈ Λ(A+ δA)

}
.

h

In general, the condition number can be finite or infinite. Note that the definition of
condition number depends on the choice of norm. Often this will be the spectral norm,
for which we use the notation κ2(A, λ).
Whenever the dependency of λ on the entries of A is sufficiently regular, it can be

expressed as the norm of the gradient of such map. Unfortunately, such global regu-
larity of the “eigenvalue functions” cannot be guaranteed, and we can only obtain the
continuity.

Theorem 2.1.2. Let A be an n × n complex matrix. Then, there exists n continuous
functions λi : Cn×n → C such that

Λ(A+ δA) =
{
λ1(A+ δA), . . . , λn(A+ δA)

}
Proof. We start by noting that p(λ) := det(λI−A) has coefficients which are continuous
functions of the eigenvalues of A. Hence, it suffices to prove that the roots of p(λ) are
continuous functions of its coefficients.

3

Let λ1, . . . , λr be the eigenvalues of A, with their multiplicities mi. Select some ϵ > 0
small enough for the sets B(λi, ϵ) to be disjoint; in particular this implies that p(λ) does
not vanish on the boundary of ∂B(λi, ϵ). Thanks to the residue theorem we have

mi :=
1

2πi

∫
∂B(λi,ϵ)

p′(z)

p(z)
dz, (2.1)

and the function p′/p is a continuous and bounded function of z and the coefficients of
p(z) over the compact set Sϵ := ∪ri=1∂B(λi, ϵ). Therefore, we can select δ such that for
any perturbation δp with norm of the coefficients vector bounded by δ, it holds

max
z∈Sϵ

∣∣∣∣p′(z) + δp′(z)

p(z) + δp(z)

∣∣∣∣ ≤ 1

2ϵ

If we compute the integral formula (2.1) for the perturbed polynomial p(z) + δp(z) we
have that the number of roots counted with multiplicities inside each B(λi, ϵ) cannot
change of more than 1

2 . Being an integer, this implies that the number does not change,
and therefore the roots cannot escape the balls B(λi, ϵ), which concludes the proof.

Much more can be said on the regularity of the eigenvalue functions. For simple
eigenvalues, these are analytic, and only lose regularity when the eigenvalue coalesce. A
classical reference on this subject is the book by Kato [5].
We now characterize the condition number for simple eigenvalues.

Theorem 2.1.3. Let A ∈ Cn×n, and λ a simple eigenvalue. Then,

κ2(A, λ) =
∥v∥2∥w∥2
|w∗v|

,

where w and v are the left and right eigenvectors relative to λ, respectively.

Proof. Since the eigenvalue is simple, we can do a first order expansion; assuming that
Av = λv we may write

(A+ δA)(v + δv) = (λ+ δλ)(v + δv).

Rearranging the addends ignoring second order terms yields

δAv +Aδv − λδv = δλv +O(∥δA∥22).

We may now left-multiply by w∗, to obtain

w∗δAv

|w∗v|
= δλ+O(∥δA∥2)

2.

Taking norms, we have the upper bound

|δλ| ≤
∥v∥2∥w∥2
|w∗v|

∥δA∥2,

4

and taking the limit ∥δA∥2 → 0 yields

κ2(A, λ) ≤
∥v∥2∥w∥2
|w∗v|

.

To show that the previous inequality is sharp, we need to find an explicit δA for which
the equality holds. A direct computation shows that the choice δA = h wv∗

∥v∥2∥w∥2
works,

and concludes the proof by taking the limit for h→ 0.

It is worth mentioning a few examples of eigenvalue condition numbers for special
classes of matrices.

• If A = A∗ then the left and right eigenvectors coincides, and therefore κ2(A, λ) = 1.

• If A is a Jordan block, the left and right eigenvectors are orthogonal; although
Theorem 2.1.3 does not cover this, a direct application of the formula yields 1

0 ,
and indeed in this case the condition number is equal to ∞.

Exercise 2.1.4. Prove that if a matrix is normal, i.e. AA∗ = A∗A, then the condition
number of its eigenvalues is equal to 1 (as in the special case of symmetric matrices
mentioned above).

Theorem 2.1.5 (Hirsch). Let A ∈ Cn×n; then, all eigenvalues λ of A satisfy |λ| ≤ ∥A∥,
where ∥·∥ is any subordinate norm.

We now state a result that bounds the distance between the eigenvalues of A and
A+ δA.

Theorem 2.1.6 (Bauer-Fike). Let A ∈ Cn×n be a diagonalizable matrix with eigenvector
matrix V :

V −1AV = D =

λ1 . . .

λn

 .
Then, for each δA ∈ Cn×n and eigenvalue µ of A + δA, there exists an eigenvalue λi
that satisfies |λi − µ| ≤ κ(V)∥δA∥., where ∥·∥ is any subordinate matrix norm induced
by an absolute norm.1

Proof. Let µ ∈ Λ(A+δA); if µ is eigenvalue of A, the theorem is trivially true, otherwise
we consider the singular matrix

V −1(A+ δA− µI)V = (D − µI) + V −1δAV.

Thanks to the nonsingularity ofD−µI, we automatically have that I+(D−µI)−1V −1δAV
is singular, and therefore −1 belongs to the spectrum of (D−µI)−1V −1δAV . Therefore,
thanks to Hirsch’s theorem we have

1 ≤ ∥(D − µI)−1V −1δAV ∥ ≤ ∥(D − µI)−1∥ · κ(V)∥δA∥.
1An absolute norm is one for which the component-wise property |xi| ≥ |yi| implies ∥x∥ ≥ ∥y∥. For
such norms we have ∥D∥ = maxi |dii| for any diagonal matrix D.

5

Since ∥·∥ is an absolute subordinate norm it holds that

∥(D − µI)−1∥ = max
i=1,...,n

1

|λi − µ|
=

1

mini=1,...,n |λi − µ|
,

which concludes the proof.

Applying Bauer-Fike’s theorem to a normal matrix with the spectral norm yields the
upper bound

|λi − µ| ≤ ∥δA∥2,

since normal matrices are diagonalized by unitary or orthogonal matrices with condition
number equal to 1. This result is stronger than the fact that the condition number for
such matrices is equal to 1, since there is no first order approximation involved.

2.2 Backward error analysis

The classical definition of stability for an algorithm is that it approximates a function
f(·) with a guaranteed accuracy ∥f − f̃∥∞ ≤ ϵ.

If f is the function that associates a matrix with its spectrum, there is little hope to
construct an unconditionally stable algorithm in floating point arithmetic. There exist
matrices with arbitrarily badly conditioned eigenvalues, for which round-off errors will
drive the spectrum far from the true solution.
To solve this problem, it is customary in numerical analysis to look for backward stable

algorithms. From now on, we use the notation

a ≲ b ⇐⇒ a ≤ Cb, C being a “moderate constant”.

We do not give a precise definition for C: in the context of numerical linear algebra, it
is often allowed to depend polynomially on the size of the problem.

Definition 2.2.1. An algorithm evaluating a function f(z1, . . . , zn) is backward stable
if, for any input z1, . . . , zn, the algorithm computes f̃ that satisfies:

f̃(z1, . . . , zn) = f(z1 + δz1, . . . , zn + δzn), ∥δzi∥ ≲ ∥zi∥ · ϵm,

where ϵm is the unit-roundoff.

If we compute the eigenvalues of A using a backward stable algorithm, we obtain
the exact eigenvalues of a matrix A + δA, with ∥δA∥ ≲ ∥A∥ϵm. This implies that the
computed eigenvalues µ1, . . . , µn satisfy

|µi − λi| ≲ κ(A, λ)ϵm +O(ϵ2m)

A backward stable algorithm provides accurate eigenvalues, with the maximum accuracy
attainable given the inherent difficulty of the underlying problem.
Given a candidate approximate eigenpair (λ, v), we may wish to measure the associated

backward error, which can be defined as follows.

6

Definition 2.2.2. Let λ ∈ C, and v ∈ Cn. The backward error of λ, v as an eigenpair
of A is defined as

BE(A, λ, v) := min{∥δA∥ | (A+ δA)v = λv}.

Similarly, the backward error of λ as an eigenvalue of A is defined as

BE(A, λ) := min{∥δA∥ | λ ∈ Λ(A+ δA)}.

Clearly, we have BE(A, λ) ≤ BE(A, λ, v), for any choice of v. The backward error of
the eigenpair can be easily computed a posteriori, in contrast with the forward error.

Theorem 2.2.3. Let A ∈ Cn×n be a square matrix, and λ, v a candidate eigenpair.
Then, for the spectral norm ∥·∥2,

BE2(A, λ, v) =
∥Av − λv∥2
∥v∥2

.

Proof. Let δA be any perturbation to A such that λ and v that are eigenvalue and
eigenvector of A+ δA. Then, we have

Av − λv = −δAv =⇒ ∥δA∥2 ≥
∥δAv∥2
∥v∥2

≥
∥Av − λv∥2
∥v∥2

.

We now show that the equality hold for a specific choice of δA. Let r := Av − λv, and
set δA := − rv∗

∥v∥22
; then, we have

(A+ δA− λI)v = (A− λI)v︸ ︷︷ ︸
r

−r v
∗v

∥v∥22
= 0.

A direct computation shows that ∥δA∥2 = ∥r∥2/∥v∥2, concluding the proof.

A similar characterization can be stated for the backward error of an eigenvalue.

Theorem 2.2.4. Let A ∈ Cn×n be a square matrix, and λ a candidate eigenvalue. Then,
for the spectral norm ∥·∥2, we have

BE2(A, λ) = ∥(A− λI)−1∥−1
2 , ∀ λ ̸∈ Λ(A)

Proof. Let δA be a perturbation such that (A+ δA)v = λv. Then, we have

(A− λI)v = −δAv =⇒ v = −(A− λI)−1δAv =⇒ ∥v∥2 ≤ ∥(A− λI)
−1∥2∥δA∥2∥v∥2.

Dividing by ∥v∥2 yields the upper bound ∥(A− λI)−1∥−1
2 ≤ ∥δA∥2. The bound holds for

any δA such that λ ∈ Λ(A+ δA), so ∥(A− λI)−1∥−1
2 ≤ BE2(A, λ).

To show the other inequality, consider v and w such that

(A− λI)−1v = w, ∥v∥2 = ∥(A− λI)
−1∥−1

2 , ∥w∥2 = 1.

Then, we have ∥(A− λI)w∥2 = ∥(A− λI)−1∥−1
2 = BE2(A, λ,w) ≥ BE(A, λ), which

concludes the proof.

7

We have emphasized how transforming an eigenvalue problem into a polynomial
rootfinding one is generally a bad idea. The most natural alternative that we will soon
pursue is to construct a matrix sequence

A0 := A→ A1 := F (A0)→ . . .→ Ak+1 = F (Ak)→ . . .

such that all matrices are similar, limk Ak is computable with sufficient accuracy, and
the eigenvalues can be read off from the limit. For instance, we may ask for the limit to
be upper triangular or diagonal.
For all this to work, we need to make sure that the transformation Ak+1 = F (Ak)

does not make the condition number of the eigenvalues worse. Not all similarities are
up to the task, but this is true when we use unitary or orthogonal matrices.

Exercise 2.2.5. Prove that if Q is unitary, then the condition numbers for the eigen-
values of A and QAQ∗ coincide, i.e., BE2(A, λ) = BE2(QAQ

∗, λ) and BE2(A, λ, v) =
BE2(QAQ

∗, λ,Qv).

2.3 The power method

We introduce the first method for computing eigenvalues: the power method. Let A be
any matrix. We consider the vector sequence defined, for any choice of v0, as follows:

v(k+1) =
Av(k)

∥Av(k)∥2
, k ≥ 0, λk = (v(k))∗Av(k) v(0) assigned. (2.2)

Up to the normalization factor, the vector v(k) satisfies v(k) = Akv(0).
Under suitable conditions, the terms (λk, v

(k)) converge to a dominant eigenpair of A.
Let us make the simplifying assumption that A is diagonalizable, with eigenvalues

|λ1| > |λ2| ≥ . . . ≥ |λn|.

Then, we can rewrite the iteration as follows

w(k) = γkD
kw(0), D :=

λ1 . . .

λn

 , γk :=
1

∥V Dkw(0)∥

This yields the following explicit expression for w(k):

w(k) = γkλ
k
1

w

(0)
1(

λ2
λ1

)k
w

(0)
2

...(
λn
λ1

)k
w

(0)
n

8

Since γk is chosen to normalize v(k), we have that if w
(0)
1 ̸= 0 all components in w(k)

go to zero for k → ∞, and w(k) converges to a multiple to e1 with rate (λ2λ1)
k. Since

v(k) = V w(k), we conclude that v(k) converges to an eigenvector relative to λ1, and
consequently λ(k) = (v(k))∗Av(k) converges to λ1 with the same linear rate. A more
formal analysis of the convergence rate will be carried out in Section 2.4.

Note that the condition w
(0)
1 ̸= 0 is generic, in the sense that if we choose x(0) randomly

with any absolutely continuous probability measure hold with probability 1. In theory,

we make an initial choice for which w
(0)
1 = 0, this condition should continue to hold

throughout the iterations. However, working in floating point arithmetic will introduce
perturbations that will lead us back to generic case.

Remark 2.3.1. The convergence mentioned above for the eigenvectors is to be intended
in a broad sense. we can only guarantee that w(k) will converge to a multiple of e1
normalized to have ∥w(k)∥ = 1, so its sign could still change over S1; this will not alter
its property of being an eigenvector, and thus the statement holds in a strict sense for
the eigenvalue approximation λ(k).

To summarize, we can implement the power method for a generic matrix A follow-
ing the pseudocode in Algorithm 1. In this code, the stopping criterion is checked by
computing the residual Av(k) − λv(k) at each iteration.

Algorithm 1 Power method applied to a matrix A starting from a vector v. The
iteration stops when ∥Av − λv∥ is smaller than a given tolerance τ .

1: procedure PowerMethod(A, v, τ)
2: λ← 0
3: r ← Av
4: while ∥r∥ > τ do
5: w ← Av
6: λ← v∗w
7: r ← w − λv
8: v ← w/∥w∥
9: end while

10: return (λ, v)
11: end procedure

A limitation of the power method is that it can only compute the eigenvalues of largest
modulus; if we are interested in the eigenvalues close to a certain point σ ∈ C, we can
consider the shifted and inverted matrix (A−σI)−1; the largest eigenvalue of this matrix
is 1

λ−σ , where λ is the eigenvalue closest to the shift.
Hence, the algorithm can be modified as reported in the pseudocode of Algorithm 2.

Note that we use an auxiliary vector ŵ to check the residual and the approximation of
the eigenvalue, since the iteration is now driven by (A− σI)−1 instead of A.

9

Algorithm 2 Shift-and-Invert Power method applied to a matrix A with shift σ, starting
from a vector v. The iteration stops when ∥Av − λv∥ is smaller than a given tolerance
τ .
1: procedure ShiftAndInvert(A, v, σ, τ)
2: λ← 0
3: r ← (A− σI)−1v
4: while ∥r∥ > τ do
5: w ← (A− σI)−1v
6: ŵ ← Av
7: λ← v∗ŵ
8: r ← ŵ − λv
9: v ← w/∥w∥

10: end while
11: return (λ, v)
12: end procedure

2.4 Convergence rate of the power method

We now formally analyze the convergence of the power iteration with respect to the
dominant eigenvector v1. Note that, even in the case that λ1 is simple, the dominant
eigenvector is defined up to a constant; in particular, it has little sense to measure quan-
tities like ∥v1 − v(k)∥ as if, for instance, v(k) → −v1 we would not detect any convergence.
The key point is to quantify how collinear are the vectors v1 and v(k), and this requires
to introduce trigonometric functions of an angle between two vectors.

Definition 2.4.1. Given x, y ∈ Cn, x ̸= 0, we define the orthogonal projections on the
span(x) and its complement as

Πx(y) =
xx∗

∥x∥22
y, Π⊥

x (y) =

(
I − xx∗

∥x∥22

)
y.

Moreover we define the sin, cos and tan of the angle between x and y as follows:

sin θ(x, y) =
∥Π⊥

x (y)∥2
∥y∥2

=
minz∈span(x) ∥y − z∥2

∥y∥2
,

cos θ(x, y) =
∥Πx(y)∥2
∥y∥2

=
|x∗y|
∥x∥2∥y∥2

,

tan θ(x, y) =
sin θ(x, y)

cos θ(x, y)
=
∥Π⊥

x (y)∥2
∥Πx(y)∥2

.

Remark 2.4.2. It holds sin θ(x, y)2 + cos θ(x, y)2 = 1, ∀x, y ∈ Cn \ {0}.
Remark 2.4.3. Trigonometric functions for vectors are commutative with respect to the
two inputs, invariant by scaling, and do not change if we apply the same unitary matrix

10

to both x and y. In particular, when analyzing the convergence of the power method
we can consider the simplified iteration v(k) = Akv(0) as the normalization step has no
influence on the collinearity of the iterate with respect to v1.

Before stating the main result, let us assume that A is diagonalizable and that
V −1AV = D := diag(λ1, . . . , λn). Then, we consider the auxiliary sequence

y(0) = V −1v(0), y(k) = Dy(k−1) = Dky(0) =⇒ y(k) = V −1v(k),

and we analyze how collinear is y(k) with respect to e1 = V −1v1, that is the dominant
eigenvector for D. Block partitioning y(k) and D as

y(k) =

[
y
(k)
1

y
(k)
2

]
, D =

[
λ1

D2

]
, y

(k)
1 ∈ C, y

(k)
2 ∈ Cn−1,

we see that

y(k) = Dky(0) =

[
λk1y

(0)
1

Dk
2y

(0)
2

]
= λk1

 y
(0)
1(

D2
λ1

)k
y
(0)
2

 .
Moreover, we have ∥

(
D2
λ1

)k
∥
2
=
∣∣∣λ2λ1 ∣∣∣k (since D2 is diagonal) and

Π⊥
e1(y

(k)) =

[
0

y
(k)
2

]
, Πe1(y

(k)) =

[
y
(k)
1

0

]
.

Putting all together, we have

tan θ(e1, y
(k)) =

∥y(k)2 ∥2
|y(k)1 |

≤
∣∣∣∣λ2λ1
∣∣∣∣k ∥y(0)2 ∥2
|y(0)1 |

=

∣∣∣∣λ2λ1
∣∣∣∣k tan θ(e1, y(0)). (2.3)

We are ready to state the main result about the convergence of the power method.

Theorem 2.4.4. Let A ∈ Cn×n be diagonalizable with eigenvector matrix V , and dom-
inant eigenvalue λ1 such that |λ1| > |λ2|. If v(0) ∈ Cn is such that u∗1v

(0) ̸= 0, for a left
dominant eigenvector u1, then the kth iterate of the power method, starting from v(0),
verifies

sin θ(v1, v
(k)) ≤ κ(V)

∣∣∣∣λ2λ1
∣∣∣∣k sin θ(v1, v

(0))

cos θ(e1, V −1v(0))
.

Proof. Note that, u∗1v
(0) ̸= 0 implies cos θ(e1, y

(0)) ̸= 0, so that the right-hand-side of
(2.3) is well defined. The latter inequality yields

sin θ(e1, y
(k)) ≤ tan θ(e1, y

(k)) ≤
∣∣∣∣λ2λ1
∣∣∣∣k tan θ(e1, y(0)).

11

Then, we have

sin θ(v1, v
(k)) = sin θ(V e1, V y

(k))

=
minz∈span(y(k)) ∥V e1 − V z∥2

∥V e1∥2

≤
∥V ∥2
∥V e1∥2

sin θ(e1, y
(k))

≤
∥V ∥2
∥V e1∥2

∣∣∣∣λ2λ1
∣∣∣∣k sin θ(e1, y

(0))

cos θ(e1, y(0))

=
∥V ∥2

cos θ(e1, V −1v(0))

∣∣∣∣λ2λ1
∣∣∣∣k minz∈span(y(0)) ∥V −1(V e1 − V z)∥2

∥V e1∥2

≤ κ(V)

∣∣∣∣λ2λ1
∣∣∣∣k sin θ(v1, v

(0))

cos θ(e1, V −1v(0))
.

Remark 2.4.5. A few remarks about the assumptions of the previous theorem:

• A diagonalizable can be relaxed to assuming λ1 simple.

• The condition u∗1v
(0) ̸= 0 is necessary but also virtually true in practice when

generating a random starting guess v(0). Indeed, the set {v ∈ Cn : u∗1v = 0} has
zero Lebesgue measure.

• Also |λ1| > |λ2| can not be removed; take for instance the case A =

[
0 1
1 0

]
and a

starting vector that is not aligned with neither v1 = [11] nor v2 =
[

1
−1

]
.

2.5 The Hermitian case

In the case that A is Hermitian we can show that the approximant of the dominant
eigenvalue computed by the power method converges with the double decay rate with
respect to the general case. To shed some lights about this phenomenon it is insightful
to look at the Rayleigh quotient function ρA(x) =

x∗Ax
x∗x that is such that ρA(v1) = λ1.

If we look at the gradient (considering ρA as a function on real vectors) we have

∇ρA(x) =
1

x∗x
(Ax+A∗x− 2ρA(x) · x).

In particular, when A is Hermitian v1 (and any other dominant eigenvector) is a sta-
tionary point for ρA while it is not when A ̸= A∗. Therefore, by looking at the Taylor
expansion of ρA(x) we have

|ρA(x)− λ1| = |ρA(x)− ρA(v1)| =

{
O(∥x− v1∥22) if A Hermitian

O(∥x− v1∥2) otherwise
.

More formally, we prove the following result.

12

Theorem 2.5.1. Let A ∈ Cn×n be Hermitian with eigenvalues |λ1| > |λ2| ≥ · · · ≥ |λ2| ≥
0, v(0) ∈ Cn such that v∗1v

(0) ̸= 0. Then, the kth iterate of the power method, starting
from v(0), verifies

tan θ(v1, v
(k)) ≤

∣∣∣∣λ2λ1
∣∣∣∣k tan θ(v1, v(0)),

|λ1 − ρA(v(k))| ≤ max
j=1,...,n

|λ1 − λj | ·
∣∣∣∣λ2λ1
∣∣∣∣2k [tan θ(v1, v(0))]2.

Proof. The inequality concerning the eigenvector convergence follows from (2.3) by ap-
plying a unitary eigenvector matrix V to the vectors involved in the trigonometric func-
tions in both the left- and the right-hand-side.
To show the second inequality we assume that the normalization step in the power

method is not performed and that the starting vector v(0) has been rescaled to obtain
∥v(k)∥2 = 1; note that, all these assumptions cause no loss of generality as the Rayleigh
quotient is invariant under (nonzero) rescaling of the argument. Let v(0) =

∑n
j=1 ajvj ,

then we have

ρA(v
(k)) = (v(k))∗Av(k) =

(v(0))∗A2k+1v(0)

(v(0))∗A2kv(0)
=

∑n
j=1 a

2
jλ

2k+1
j∑n

j=1 a
2
jλ

2k
j

.

So that

|λ1 − ρA(v(k))| =

∣∣∣∣∣
∑n

j=2 a
2
jλ

2k
j (λj − λ1)∑n

j=1 a
2
jλ

2k
j

∣∣∣∣∣ ≤ maxj=1,...,n |λ1 − λj |
a21

n∑
j=2

a2j

∣∣∣∣λ2λ1
∣∣∣∣2k

= max
j=1,...,n

|λ1 − λj |
∣∣∣∣λ2λ1
∣∣∣∣2k [tan θ(v1, v(0))]2.

2.6 Subspace iteration

As a natural generalization of the power method, we may consider iterating over sub-
spaces instead of vectors. Mathematically, we wish to select an initial subspace U0 ⊆ Cn,
and then construct a sequence of subspaces as follows:

Uk+1 := AUk = {Ax | x ∈ Uk}.

In the case of the vector iteration, we have convergence to an eigenvector; this may
be reinterpreted as converging to a basis of a one-dimensional subspace, by setting
Uk := span(vk). For subspaces of higher dimension, convergence to an eigenvector is
replaced with convergence to an invariant subspace. Recall that, given a linear operator
A, an invariant subspace is one satisfying AU ⊆ U . If U is a matrix whose columns span
U , the property of being an invariant subspace of dimension p can be rephrased as

AU = UR, R ∈ Cp×p. (2.4)

13

Note that if Rw = λw then Uw is an eigenvector relative to λ for A:

AUw = URw = λUw =⇒ λ ∈ Λ(A).

Hence, finding an invariant subspace described as in (2.4) is valuable for computing
selected eigenvalues.
Not all bases are numerically suitable for representing subspaces. Given a basis U , we

have that any vector in U can be written as v = Uw, where w is the vector of coordinates
in the chosen basis:

v = w1u
(1) + . . .+ wku

(k) =

u(1) · · · u(k)

w1

...
wk

 .
We need to ensure that small perturbations in the input data for this representation

(for instance, the vector w), correspond to small changes in the output (the vector v).
A natural choice to achieve this goal is taking U orthogonal. This guarantees

∥U(w + δw)− Uw∥2 = ∥Uδw∥2 = ∥δw∥2,

thanks to the unitary invariance of the Euclidean norm.
Given any basis matrix V of size n×p, we can always make it orthogonal (or unitary)

by computing a thin (or economy size) QR factorization:

V = QR = =⇒ colspan(V) = colspan(Q),

that holds because det(R) ̸= 0, since V is full rank. The matrix Q is computed through
a sequence of p−1 Householder reflectors, each of them annhiliating subdiagonal entries
in the ith column. In detail, we start by determining a reflector P1 = I − βuu∗ such
that P1(V e1) = r11e1, which yields

P1V =

r11 × · · · ×
0 × · · · ×
...

... · · ·
...

0 × · · · ×

 .
The matrix P is a rank-1 perturbation to a unitary matrix, so the cost of computing
P1V is O(np) flops (floating point operations). Then, the remaining columns can be
reduced to upper triangular form by computing similar matrices P2, . . . , Pp, with a total
computational cost of O(np2) (to be precise, when p = n only p − 1 reflectors are
necessary, whereas p are needed in all other cases).

14

Algorithm 3 Subspace iteration for A, starting from an orthogonal matrix U (0)

1: procedure SubspaceIteration(A,U (0))
2: for i = 0, 1, . . . do
3: W (k+1) ← AU (k)

4: U (k+1)R(k+1) ←W (k+1) ▷ QR factorization
5: Y (k+1) ← (U (k+1))∗AU (k+1)

6: end for
7: end procedure

We now have all the tools to describe the subspace iteration, starting from a generic
n × k basis U (0). The corresponding pseudocode is described in Algorithm 2.6. The
latter introduces the quantity Y (k+1) = (U (k+1))∗AU (k+1), which takes the role of the
term (v(k))∗Av(k) that we had in the power iteration. Observe that if U (k) is a basis for
an invariant subspace, this yields

AU (k) = U (k)Y (k) =⇒ Λ(Y (k)) ⊆ Λ(A),

with U (k)w being the eigenvectors, if Y (k)w = λw. Hence, when A is large, we can use
the eigenvalues of the (small) matrix Y (k) as approximation for its (largest) eigenvalues.
Approximation to the eigenvectors are obtained as well.
A convergence theorem for the subspace iteration would require the angle between

subspaces, which is nicely described by the singular value decomposition (SVD), a tool
which we have not yet introduced. Hence, we will limit ourselves to understanding the
convergence of the eigenvalues of Y (k) to the ones of A, which depends on λp+1/λp.

Theorem 2.6.1. Let A be an n × n diagonalizable matrix, with V −1AV = D, and
D = diag(λ1, . . . , λn). Let U (0) ∈ Cn×p be a matrix with orthogonal columns. If the
eigenvalues, ordered by magnitude, satisfy

|λ1| ≥ . . . ≥ |λp| > |λp+1| ≥ . . . ≥ |λn|,

and V −1U (0) has an invertible minor in the top p rows, then the subspace iteration
defined in Algorithm 2.6 produces a sequence of matrices Y (k) whose spectrum converges
to {λ1, . . . , λp} with rate λp+1/λp.

Proof. The definition of subspace iteration implies that the iterate U (k) is an orthogonal
basis of AkU (0). If the latter is a full-rank matrix, this completely determines the column
span of U (k).

We may write AkU (0) leveraging the eigendecomposition of A, using the hypothesis
on the invertibility of the top p× p submatrix of V −1U (0):

AkU (0) = V DkV −1U (0) =: V Dk

[
X0

X1

]
, detX0 ̸= 0.

15

Notice that this implies that AkU (0) is full rank for all k. Partitioning D as D1 ⊕D2,
with D1 containing the eigenvalues λ1, . . . , λp, we obtain that

colspan(U (k)) = colspan

(
V

[
Dk

1X0

Dk
2X1

])
= colspan

(
V

[
Ip

Dk
2X1X

−1
0 D−k

1

])
,

where we have used that colspan(AB) = colspan(A) for any invertible matrix B, and
tall and thin matrix A. Since ∥Dk

2X1X
−1
0 D−k

1 ∥ converges to zero with rate λp+1/λp, the
intuition suggests that

colspan(U (k))→ colspan

(
V

[
Ip
0

])
,

which are the eigenvectors relative to λ1, . . . , λp. Formalizing this claim would require
angles between subspaces; we now prove the claim about the eigenvalues of Y (k). Let vj

be the eigenvector for λj in A. Then, by defining w
(k)
j := (U (k))∗vj we have

Y (k)w
(k)
j = (U (k))∗AU (k)(U (k))∗vj = (U (k))∗λjvj − (U (k))∗A(I − U (k)(U (k))∗)vj

= λjw
(k)
j − (U (k))∗A(I − U (k)(U (k))∗)vj .

By taking spectral norms, we can bound the residual for the eigenpair λj , w
(k)
j as follows:

∥Y (k)w
(k)
j − λjw

(k)
j ∥2 ≤ ∥A∥2∥(I − U

(k)(U (k))∗)vj∥2 = ∥A∥2 min
z∈colspanU(k)

∥vj − z∥2,

where in the last step we have used the characterization of the orthogonal projection
as the minimization of the Euclidean norm of the difference. We can make an explicit
choice for z, by setting

z = V

[
Ip

Dk
2X1X

−1
0 D−k

1

]
ej =⇒ z − vj = V

[
0p

Dk
2X1X

−1
0 D−k

1

]
ej .

Taking norms, yields the upper bound

∥Y (k)w
(k)
j − λjw

(k)
j ∥2 ≤ ∥A∥2∥V ∥2∥X1X

−1
0 ∥2∥D

k
2∥2∥D

−k
1 ∥2 ∼ O

(∣∣∣∣λp+1

λp

∣∣∣∣k
)
.

Hence, λj is an approximate eigenvalue of Y (k) with backward error bounded as above,
thanks to Theorem 2.2.3. The conclusion follows by a continuity argument of the spec-
trum, combined with the fact that Y (k) is diagonalizable for large enough k, and therefore
the dependence is at least C1 (for large enough k).

16

2.7 Simultaneous iteration

A key advantage of subspace iteration is that, while running the algorithm with subspaces
of dimension p, we are actually simultaneously running all iterations for p′ = 1, . . . , p.

Note that, if W is tall and thin, its economy-size QR factorization has emebedded all
the economy-size QR factorizations for W ′ that include the first p′ columns of W :

W = QR =⇒ W

[
Ip′

0

]
= QR

[
Ip′

0

]
=

(
Q

[
Ip′

0

])([
Ip′ 0

]
R

[
Ip′

0

])
.

Hence, if we restrict the matrices U (k) and Y (k) generated by the subspace iteration by
considering only the first p′ columns of U (k) and the top p′ × p′ minor of Y (k), we get
the subspace iteration of dimension p′ started from the first p′ columns of U (0).

An immediate consequence of this observation is the following result.

Theorem 2.7.1. Let A be a diagonalizable matrix with eigenvalues ordered as |λ1| >
. . . > |λn|, and consider the matrices U (k) generated by the subspace iteration started
from U (0) = In. Then, if the leading p × p minors of the inverse eigenvector matrix
V −1 are all invertible, the sequence Y (k) converges, up to scaling by diagonal unitary
matrices, to a Schur form of A.

Proof. It suffices to combine all observations that we have made up to now. The hy-
pothesis on V −1 guarantees the convergence of all the simultaneous subspace iterations
for p = 1, . . . , n. As a consequence, the unitary matrices U (k) converge to an orthogo-
nal basis spanned by the eigenvectors relative to λ1, . . . , λn, which in turn implies the
convergence of Y (k) to a Schur form.

The eigenvector basis is uniquely determined up to a scaling of the columns by a
complex number of modulus 1, from which the thesis follows.

Exercise 2.7.2 (Real Schur form). Show that the assumptions of Theorem 2.7.1 fail for
real matrices with complex eigenvalues, but nevertheless the proof can be modified to
guarantee convergence to the real Schur form, with 2× 2 blocks on the diagonal.

2.8 The QR iteration

We now rephrase the simultaneous subspace iteration in a way that will be much more
amenable to efficient computation. On one hand, the simultaneous subspace iteration
delivers an approximation of the Schur form, as originally desired. On the other hand,
it does so at a large cost: the convergence speed is slow (governed by the minimal ratio
between two consecutive eigenvalues), and the cost per iteration is cubic.
Recall that our aim is to design a matrix iteration that produces a sequence of matrices

that are similar, through unitary or orthogonal matrices. In fact, the simultaneous
iteration started with U (0) = In constructs such sequence:

Y (k+1) = (U (k+1))∗AU (k+1) = (U (k+1))∗U (k) (U (k))∗AU (k)︸ ︷︷ ︸
Y (k)

(U (k))∗U (k+1) = (Z(k))∗Y (k)Z(k),

17

where we have set Z(k) := (U (k))∗U (k+1). Moreover, looking at line 4 in Algorithm 2.6,
we see that

Z(k)R(k+1) = Y (k),

meaning that Z(k) is the Q factor of a QR factorization of the matrix Y (k). Finally,
observe that to get the conjugate of a square matrix with respect to its Q factor it is
sufficient to compute product RQ of its QR factorization; in our context this reads as

Y (k+1) = (Z(k))∗Y (k)Z(k) = R(k+1)Z(k).

Therefore, if we find a way to construct the matrices Z(k) directly, we can rephrase the
iteration in a more convenient way. To achieve this, we need to first recall a few relevant
facts regarding the QR factorization of a matrix A.

Theorem 2.8.1. Let A ∈ Cm×n be a full rank matrix with m ≥ n, and Q1R1 = Q2R2 =
A two economy-size QR factorizations. Then, there exists a unitary diagonal matrix D
such that Q1 = Q2D.

Proof. Since R1 and R2 need to be invertible n×n matrices, We may rearrange the two
factorization by writing:

D := Q∗
2Q1 = R2R

−1
1

From the above equation we conclude that D is upper triangular. Moreover, by using
that the column span of Q1 is included in the one of Q2 (and viceversa), we also have
that D is a unitary (or orthogonal) square matrix. A unitary upper triangular matrix
has to be diagonal with diagonal entries of modulus 1. To conclude, we use again that
the column span of Q1 is included in the one of Q2 to get:

Q1 = Q2Q
∗
2Q1 = Q2D.

Diagonal unitary matrices are often called phase matrices, since the diagonal contain
elements of modulus 1, which can be interpreted as angles. The previous result shows
that the QR factorization is essentially unique.

Exercise 2.8.2. Show that the hypothesis of being full rank is (almost) necessary, and if
rank(A) ≤ n− 2 the essential uniqueness is lost.

The observations that we used to define Z(k) allow to construct the QR iteration,
described in Algorithm 4. The pseudocode can be implemented quickly, since the kernel
of each iteration is just one QR factorization and one matrix-matrix multiplication.
However, Algorithm 4 in its current form is far from practical for the following reasons:

• The convergence depends on the eigenvalues being of different moduli, and can be
very slow for clustered eigenvalues.

• Each iteration has a cubic cost (both the QR factorizations and the matrix-matrix
multiplication contribute to this), and even in the optimistic scenario where O(n)
iterations are enough, this would still yields a O(n4) algorithm.

18

Algorithm 4 Explicit QR iteration

1: procedure QR(A)
2: Y (0) ← A
3: for i = 0, 1, . . . do
4: Z(k), R(k) ← QR(Y (k))
5: Y (k+1) ← R(k)Z(k)

6: end for
7: end procedure

• Several hypotheses that we have made are often not satisfied. For instance, all real
matrices with complex conjugate eigenvalues have eigenvalues |λp| = |λp+1|.

The next section will be dedicated to tweak the algorithm to make it a practical
one, which is indeed the state-of-the art algorithm for computing eigenvalues of general
unstructured matrices.

2.9 Shifting and deflation

Let us consider the following model problem: we have a matrix A with eigenvalues
satisfying the following inequalities:

|λ1| ≥ . . . ≥ |λn−1| > |λn|,
|λn|
|λn−1|

= ϵ≪ 1.

In view of the previous analysis, we expect that after k iterations of the QR method we
get a matrix Y (k) of the form

Y (k) =

×

Ŷ (k)
...
×

(w(k))T λ
(k)
n

 ,
{
|λ(k)n − λn| ∼ O(ϵk)
∥w(k)∥ ∼ O(ϵk)

.

If ϵ is sufficiently small, after a few iterations we will have that ∥w(k)∥ will be of the size
of the machine precision, and therefore we may consider the slightly perturbed matrix

Y (k) + δY (k) =

×

Ŷ (k)
...
×

0T λ
(k)
n

 ,
which has exactly λ

(k)
n as eigenvalue. Since this matrix is unitarily similar to A, this cor-

respond to the exact QR iteration with the matrix A+ δA with δA = U (k)δY (k)(U (k))∗,

which has spectral norm equal to ∥w(k)∥. Hence, we can decide that λ
(k)
n is an approx-

imate eigenvalue of A with a small backward error, and continue the iteration on the
smaller (n− 1)× (n− 1) matrix Ŷ (k). This procedures is called deflation.

19

There is, in general, no reason to assume that λn is much smaller than the rest of
spectrum, and therefore to be in this favorable situation. It turns out that we can
always slightly modify the eigenvalue problem to make it happen.
Assume to be given a certain shift σ ∈ C such that σ ≈ λn; then, the shifted matrix

A− σI has λn − σ as eigenvalue of smaller module (if we assume that σ is closer to λn
than to any other eigenvalue). Applying one step of QR iteration to the shifted matrix
will yield

Y (0)
σ = A− σI Z(0)

σ R(0)
σ = Y (0)

σ

Y (1)
σ = (Z(0)

σ)∗Y (0)
σ Z(0)

σ = (Z(0)
σ)∗AZ(0)

σ − σI,

where we have denoted by Y
(k)
σ the iteration obtained by starting from A − σI. This

observation may be generalized to an arbitrary number of steps through the following
result.

Lemma 2.9.1. Let Y
(k)
σ the matrix sequence generated by the QR iteration started with

A − σI. Then, if we denote by Z
(k)
σ the orthogonal matrix of the QR factorization at

step k,
(Z(0)

σ . . . Z(k−1)
σ)∗A(Z(0)

σ . . . Z(k−1)
σ) = Y (k)

σ + σI, ∀k ≥ 0.

Proof. The definition of the QR iteration yields

(Z(0)
σ . . . Z(k−1)

σ)∗(A− σI)(Z(0)
σ . . . Z(k−1)

σ) = Y (k)
σ .

The claim follows by moving σI to the right hand side, and recalling that the matrices
Z(i) are unitary.

We conclude that, if we have a good approximation σ ≈ λn at our disposal, we can
make the (shifted) QR iteration converge in a few steps to a form where λn can be
“deflated”. Then, we proceed by restricting our focus on the top-left (n − 1) × (n − 1)
minor, and continue the process. The two more common strategies for choosing the shift
σ are the following (note that, in practice, the shift σ is renewed at each iteration):

Rayleigh shift works by selecting σ = Y
(k)
nn ; this choice may block convergence, for

instance for real matrices wiht complex eigenvalues, where the iteration cannot
“escape” real matrices, or for particular symmetric configurations.

Wilkinson shift selects as shift one of the eigenvalues of the bottom-right 2× 2 matrix,

taking the one closest to Y
(k)
nn ; this choice guarantees convergence for symmetric

matrices, and works very well in practice for unsymmetric matrices as well.

Shifting has the purpose of guaranteeing convergence of QR in about O(n) iterations,
most often about 2 per eigenvalue. This implies that the cost of the QR method is
O(n · f(n)), where f(n) is the cost of a single iteration. In our setting, f(n) = n3

because of the QR factorization and the matrix-matrix multiplication, and this leads to
a total cost of O(n4) flops.

20

For dense linear algebra methods, a cubic cost is the usual target, and for eigenvalue
problems can be achieved by using the Hessenberg reduction, described in the next
section.

2.10 Hessenberg reduction

A key observation for reducing the cost of the iteration is preprocessing the matrix to
make it “as upper triangular as possible”. Clearly, the preprocessing step needs to work
with unitary matrices, and to be a similarity.

Definition 2.10.1. A matrix H is in Hessenberg form if it has zero elements below the
first subdiagonal, i.e., if Hij = 0 for all i > j + 1.

The reduction of the matrix to Hessenberg form can be computed with O(n3) flops
using Householder reflectors.

Lemma 2.10.2. Let A be any n× n complex matrix, with n ≥ 2. Then, there exist an
upper Hessenberg matrix H and n − 2 Householder reflectors Pj for j = 1, . . . , n − 2,
such that

Pn−2 . . . P1AP
∗
1 . . . P

∗
n−2 = H,

The matrices H and P := Pn−2 . . . P1 can be computed from A with O(n3) flops.

Proof. The proof presents an algorithm for computing H and Pj with the required
asymptotic complexity. A more formal proof can be obtained by using induction. Let
P̂1 be a (n− 1)× (n− 1) Householder reflector such that

P̂1A2:n,1 =

×
0
...
0

 ,
where × is used to denote a generic non-zero element. Then, if we define P1 := 1 ⊕ P̂1

the matrix P1AP
∗
1 has the following sparsity pattern (by a direct computation):

A(1) := P1AP
∗
1 =

× × × . . . ×
× × × . . . ×

0
...

. . .
...

...
...

. . .
...

0 × × . . . ×

 ,

and can be compute in O(n2) flops exploiting the identity-plus-rank-1 structure of the
Householder reflector. Following the same idea, P2 can be defined to have

P2 = I2 ⊕ P̂2, P̂2A
(1)
3:n,2 =

×
0
...
0

 .

21

Computing P2A
(1)P ∗

2 will put the second column in “Hessenberg form”, and will not
deteriorate the structure of the first column, thanks to the presence of I2 on top. Con-
tinuing the process yields the required upper Hessenberg matrix H = A(n−2).

Preprocessing the matrix A to be in upper Hessenberg form brings two key advantages
to the QR iteration:

• For an upper Hessenberg matrix, the QR factorization Z(k)R(k) = Y (k) and the
next iterate Y (k+1) := R(k)Z(k) can be computed with O(n2) flops.

• The Hessenberg structure is preserved by the QR iterations, and therefore the
above benefit is not limited to the first step.

We now introduce Givens’ rotations, which are unitary matrices with a similar aim
of Householder reflectors, but that act element-by-element, making it easier to preserve
sparsity.

Definition 2.10.3. A Givens rotation acting on rows (k, l) is a matrix of the form G
such that, for some c, s ∈ C with |c|2 + |s|2 = 1,

G =

Ik1

c s
Ik2

−s c
Ik3

 ,
and such that the entries c, s,−s, c are found on rows and columns k or l. These trans-
formations are unitary with det(G) = 1.

The property |c|2+ |s|2 allows to interpret c and s as (complex) cosines and sines, and
this is the reason for naming these transformation “rotations”. Often, we will consider
l = k + 1, which allows to look for the simplified form

G = Ik1 ⊕ Ĝ⊕ Ik2 , Ĝ :=

[
c s
−s c

]
.

Lemma 2.10.4. Given any vector v ∈ Cn and i > 1, it exists a Givens’ rotation G such
that (Gv)i = 0, and G only changes the rows i − 1 and i of v. In particular, G can be
applied with O(1) flops.

Proof. We consider the problem of finding the 2× 2 rotation Ĝ such that

Ĝ

[
vi−1

vi

]
=

[
×
0

]
,

where × is a placeholder for any complex number. This is equivalent to imposing cvi −
svi−1 = 0, which is a linear equation in c, s; choosing any norm 1 solution yields the
sought result by setting G = Ii−2 ⊕ Ĝ⊕ In−i.

22

We now use Givens’ rotations for computing a QR factorization of an upper Hessenberg
matrix in quadratic time.

Lemma 2.10.5. Let H be an n× n upper Hessenberg matrix. Then, there exists n− 1
Givens’ rotations G1, . . . , Gn−1 with Gi acting on rows i and i+ 1, such that

H = G∗
1 . . . G

∗
n−1R = QR,

with R upper triangular. The matrices Q and R can be computed with O(n2) flops.

Proof. We prove the result by induction, showing that the construction requires at most
8n2 floating point operations. The result is trivially true for n = 1, since H is already
upper triangular, and we can just set Q = 1 as the empty product of 0 rotations.
Assume that the result holds true for n− 1, and consider a rotation G1 operating on

rows 1 and 2 such that:

G1

H11

H21

0
...
0

 =

×
0
0
...
0

 .
We then have

G1H =

× × . . . ×

Ĥ

 ,
with Ĥ an (n − 1) × (n − 1) upper Hessenberg matrix. By induction, we have Ĥ =
Ĝ∗

1 . . . Ĝ
∗
n−2, and by setting Gi := 1⊕ Ĝi−1 for i = 2, . . . , n− 1, we get

H = G∗
1G

∗
2 . . . G

∗
n−1

× × . . . ×

R̂

︸ ︷︷ ︸

=:R

= G∗
1G

∗
2 . . . G

∗
n−1R = QR.

A direct computation shows that multiplying a rotation by a matrix requires 4n floating
point operations2, obtaining R and Q from R̂ and Q̂ := Ĝ∗

1 . . . Ĝ
∗
n−2 requires 2 prod-

ucts by G1. In addition, we have 4 more floating point operations for finding G1 and
computing G1He1, which yields the total cost

8n+ 4 + 8(n− 1)2 = 8n2 − 8n+ 12 ∼ O(n2).

We now focus on the structure preservation statement. We briefly recall the definitions
of lower and upper banded matrices.

2Here we are considering for simplicity a CPU capable of a fused-multiply-add, that can compute ab+ c
in a single floating point operation; any modern CPU supports this instruction.

23

Definition 2.10.6. A matrix has lower (resp. upper) bandwidth k if all its entries below
the k-th subdiagonal (resp. superdiagonal) are zero.

According to this definition, a matrix with bandwidth k has bandwidth k′ for any
k′ > k; sometimes, it is helpful to also require at least one nonzero diagonal entry to
make sure that the bandwidth can be precisely defined. For our applications, this will
not be of particular importance.

Lemma 2.10.7. Let A,B be matrices with lower (resp. upper) bandwidth kA, kB, re-
spectively. Then, their product AB has lower (resp. upper) bandwidth kA + kB.

Proof. Note that having bandwidth kA can be rephrased as the following inclusion:

Aej ∈ colspan{e1, . . . , emin{j+kA,n}},

and similar for B. Hence, the claim is equivalent to verify that

ABej = Av = A

 ∑
i≤min{j+kB ,n}

γiei

 =
∑

i≤min{j+kB ,n}

γiAei ∈ Sj ,

where

Sj :=
min{j+kB ,n}⋃

i=1

colspan{e1, . . . , emin{i+kA,n}} = colspan{e1, . . . , emin{j+kA+kB ,n}}.

We can now make use of Lemma 2.10.7 to ensure that, under the full-rank assump-
tion of the iterates in the QR method, which ensure essential uniqueness of the QR
factorizations, we have structure preservation for Hessenberg matrices.

Lemma 2.10.8. Let H be a full rank upper Hessenberg matrix, and H = QR a QR
factorization. Then, the matrix Q is upper Hessenberg.

Proof. The full-rank assumption guarantees the invertibility of R, and therefore we have
Q = HR−1. The result follows from Lemma 2.10.7.

Lemma 2.10.9. Let Y (k+1) = R(k)Z(k) + σkI be the (k + 1)th iterate of the (shifted)
QR method started with an upper Hessenberg matrix Y (0) of full rank. Then, Y (k+1) is
upper Hessenberg as well.

Proof. Lemma 2.10.9 guarantees that Z(k) is upper Hessenberg, and therefore we have
that Y (k+1) = R(k)Z(k) + σkI is upper Hessenberg as well by means of Lemma 2.10.7,
since the shift σkI does not introduce any perturbation in the Hessenberg structure.

24

2.11 Computing eigenvectors and invariant subspaces

The QR iteration as discussed in the previous sections allows to build a sequence of
similar matrices Y (k) that, under suitable assumptions, converge to a Schur form of
Y (0) = A. The final Schur form T is enough for determining the eigenvalues (we just
need to read the diagonal entries) and in case of multiple eigenvalues the corresponding
Jordan blocks as well.
The eigenvector recovery is more involved, and is performed in two steps:

• First, we determine the eigenvectors w of the upper triangular matrix T , corre-
sponding to the eigenvalues λi := Tii for i = 1, . . . , n.

• Then, we recover the eigenvectors of the original problem by using the relation
Q∗AQ = T and setting v = Qw.

If Tw = λw then AQ = QT implies Av = AQw = QTw = λQw = λv, and therefore the
second step completely characterizes the eigenvectors of A starting from the ones of T .
The analogue construction works to map Jordan chains into Jordan chains as well.
To compute the eigenvectors of the upper triangular matrix, we make the simplifying

assumption that Tii is simple, and rely on the following observation:

T − TiiI =

T1

0

T2

x

 ,

with T1 nonsingular and upper triangular. We need to determine a vector in the right
kernel of the above matrix, which can be done by imposing:

(T − TiiI)w = 0, w =

y1
0

 ,
where w is partitioned to match the block structure identified in T . Then, we solve
the equation by setting T1y = −x. Hence, y (and therefore w) is determined solving
an upper triangular linear system, which costs at most O(n2) flops. This needs to be
repeated for all eigenvalues, yielding a total cost of O(n3).
Exercise 2.11.1. Work out what happens in the case of multiple but semisimple eigen-
values, and in the case of Jordan chains. Note that, although theoretically possible to
extract Jordan chains from the Schur form, matrices with a nontrivial Jordan structure
form a zero-measure set within all square matrices, and need therefore to be treated
carefully when working in floating point arithmetic.

25

A similar technique can be used to find orthogonal basis for invariant subspaces cor-
responding to a subset {λ1, . . . , λk} ⊆ Λ(A) of all the eigenvalues of A. Assume that we
are particularly lucky, and that the Schur form computed by the QR iteration satisfies

Q∗AQ =

[
T11 T12

T22

]
, T11 =

λ1 . . .

λk

 ,
with T22 containing all the other eigenvalues. Then, the invariant subspace under con-
sideration is spanned by the first k columns of Q, which form an orthogonal basis for it.
Our problem is easily solved.
However, there is no particular reason why this should happen: the QR iteration can

compute the eigenvalue in any order, and we have little control over the process. If the
eigenvalues end up in the “wrong” place, we can simply reorder them, to push the ones
of interest at the top of the matrix.
The problem can be reduced to the 2×2 case which is solved by the following Lemma.

Lemma 2.11.2. Let T be an upper triangular matrix with two distinct eigenvalues
t11 = λ1 ̸= λ2 = t22; let G be a Givens’ rotation such that, for some α ∈ C,

G

[
t12

λ2 − λ1

]
=

[
α
0

]
,

Then, the matrix GTG∗ is upper triangular with eigenvalues listed in the opposite order.

Proof. Note that, by construction, we have

G(T − λ1I)G∗ = G

[
0 t12
0 λ2 − λ1

]
G∗ =

[
0 α
0 0

]
G∗ =

[
× ×
0 0

]
,

where as usual we have used × to denote the sparsity pattern in the matrix. Applying
the same transformation to T yields

GTG∗ =

[
× ×
0 0

]
+ λ1I =

[
λ2 ×
0 λ1

]
,

where the entry in position (1, 1) is determined to be exactly λ2 because the eigenvalues
of T cannot change under similarity.

Lemma 2.11.2 can be employed to swap two eigenvalues λi, λi+1 of a larger n×n upper
triangular matrix by considering a rotation on two consecutive rows. Using the fact that
transpositions generate all the permutations, we conclude that any permutation of the
eigenvalues is possible, and is easily obtained by repeated applications of Lemma 2.11.2.

Exercise 2.11.3. Show that any invariant subspace (i.e., corresponding to an arbitrary
choice of eigenvalues) can be computed with O(n3) flops using the QR iteration and
eigenvalue reordering3.
3For this task, assume convergence of the QR iteration in at most O(n) steps.

26

2.12 Double shifting and the real Schur form

If the matrix A is real, computing the Schur form with complex shifts may be undesirable,
because of the additional cost of complex arithmetic. Clearly, there is no hope of finding
the Schur form with real arithmetic if the matrix has complex eigenvalues.
We can, however, restrict our attention to the real Schur form:

Definition 2.12.1. A matrix T is in real Schur form if it is block upper triangular with
diagonal block Tii such that either Tii is a 1 × 1 real matrix, or a 2 × 2 matrix of the
form

Tii =

[
a b
−b a

]
,

which has a± ib as eigenvalues.

Even though a matrix in real Schur form is not (strictly speaking) upper triangular, its
eigenvalues are immediately readable from the diagonal blocks without any computation.
In addition, the arguments used to find the eigenvectors and invariant subspaces from
the Schur form can be easily adapted.
The real structure can be maintained throughout the iterations by the following trick;

if a shift σ is determined (for instance by the Wilkinson shifting strategy), we proceed
as follows:

• If σ ∈ R, we proceed with the standard QR iteration.

• If σ ∈ C \ R, we consider the polynomial with real coefficients

p(z) = (z − σ)(z − σ) = z2 − 2ℜ(σ)z + |σ|2,

and compute p(Y (k))e1.

In the second case, we consider the two rotations needed to transform p(Y (k))e1 into a
multiple of e1, and apply these rotations to Y (k). We then restore the upper Hessenberg
structure by chasing the 2× 2 bulge analogously to the single shift case.
An iteration of this form costs about twice as much as a single shift iteration. However,

the convergence can be linked to the subspace iteration applied to p(Y (k)), and therefore
we can expect the eigenvalues close to σ and σ to be well-approximated together.

In particular, we will have soon that the last two rows of Y (k), and we will be able to
deflate a 2 × 2 block at once. This block will have complex conjugate eigenvalues, and
can be put in the standard real Schur form.

Remark 2.12.2. We can take the idea even further; if we have a good estimate for a
group of eigenvalues σ1, . . . , σm, we may choose the shift polynomial as

p(z) =

m∏
j=1

(z − σj).

According to the previous analysis, we may establish a connection with the subspace
iteration shifted with all those shifts at once. Although this idea sounds attractive on

27

paper, as m grows large a phenomenon known as shift blurring [7] comes into play, and
the effect of the shifts “fades”. However, intermediate values of m allow for better cache
usage on modern processors, and is known as the multishift QR algorithm.

3 Symmetric eigenvalue problems and the SVD

Symmetric eigenvalue problems are inherently easier than nonsymmetric ones, and allow
to prove much stronger results and characterizations. In this section, we discuss the tridi-
agonal QR iteration, bounds in the eigenvalues through variational characterizations, the
divide-and-conquer scheme.
We will then see that there is a close relation between the symmetric eigenproblem

and the singular value decomposition (SVD), a powerful theoretical and algorithmic
factorization.

3.1 Tridiagonal QR iteration

If we apply the QR iteration to a symmetric a few observations can be made, which are
summarized by the next Lemma.

Lemma 3.1.1. Let A = A∗ a symmetric or Hermitian matrix, and Y (k) the QR iterates
applied after the Hessenberg reduction Y (0) = Q∗AQ. Then, all the matrices Y (k) are
tridiagonal.

Proof. Note that Y (k) are unitarily similar to A, therefore there exists Qk orthogonal
(or unitary) such that Q∗

kAQk = Y (k). Hence, Y (k) = (Y (k))∗ are all symmetric (or
Hermitian).
All the Y (k) are Hessenberg in view of Lemma 2.10.9, and Hessenberg matrices have

only one subdiagonal different from zero. The symmetry implies that all Y (k) have only
one non-zero superdiagonal, and are therefore tridiagonal.

Reducing a symmetric matrix A to tridiagonal form is not cheaper than reducing a
general matrix to upper Hessenberg form, we still need to apply the rotations on the
full matrix, for a total cost of O(n3) flops. If A is tridiagonal, however, this structure is
easily exploited in the QR iteration if only the eigenvalues are desired. Indeed, computing
Y (k+1) from Y (k) requires the following steps:

• Find an appropriate shift σ (cost: O(1) flops).

• Determine a rotation such that Y (k)e1 − σe1 is a multiple of e1 (cost: O(1) flops).

• Apply the rotation to the matrix, and chase it to the bottom (cost: applying O(n)
rotations).

The last item is the expensive part, and in the unstructured case each rotation costs
O(n) flops. In the tridiagonal case, the tridiagonal-plus-bulge structure is preserved
throughout the chasing process, and therefore a rotation can be applied at O(1) cost.

28

Summarizing, we can run the tridiagonal QR iteration with O(n) flops per iteration, for
a total cost of O(n2) flops.
Remark 3.1.2. Computing the eigenvector in the tridiagonal case is however much more
expensive: the rotations need to be applied to the Q matrices that represent the change
of basis, and this requires O(n) flops per iteration. The total cost of the method is again
O(n3) flops.

3.2 Courant-Fischer’s theorem and interlacing properties

As seen when analyzing the power method, in the Hermitian case, there is an intimate
relation between eigenvalues, eigenvectors, and the Rayleigh quotient. Here, we provide
a powerful theoretical tool, known as Courant-Fischer min-max theorem, that charac-
terizes the eigenvalues as optimal values of the Rayleigh quotient over subspaces.

Theorem 3.2.1. Let A ∈ Cn×n be a Hermitian matrix with eigenvalues λ1 ≥ λ2 ≥ · · · ≥
λn. Then:

max
U ⊂ Cn

dim(U) = k

min
x ∈ U
x ̸= 0

x∗Ax

x∗x
= λk,

min
U ⊂ Cn

dim(U) = k

max
x ∈ U
x ̸= 0

x∗Ax

x∗x
= λn−k+1,

for all k = 1, 2, . . . , n.

Proof. We prove only the max-min part as the min-max is completely analogous.
Let v1, . . . , vn be an orthonormal basis of Cn made of eigenvector of A and let S :=

colspan(vk, . . . , vn). Then, for every U ⊂ Cn of dimension k we have that S ∩ U ̸= {0};
more specifically, there exists x ∈ S ∩U , so that x =

∑n
j=k cjvj and x ̸= 0. This implies

x∗Ax

x∗x
=

∑n
j=k |cj |2λj∑n
j=k |cj |2

≤ λk.

This proves that, for each U , the minimum of the Rayleigh quotient is less or equal
than λk which implies that the maximum over all possible U , of the minimum Rayleigh
quotient is also bounded from above by λk. To get the claim, it is sufficient to show that
for at least one choice of U , the value λk corresponds to the minimum of the Rayleigh
quotient. This happens when considering U = colspan (v1, . . . , vk), and this concludes
the proof.

Courant-Fischer’s result offers an interesting perspective that allows us to relate the
eigenvalues of a Hermitian matrix with those of smaller matrices obtained by orthogonal
projection.

29

Corollary 3.2.2. Let A ∈ Cn×n be a Hermitian matrix with eigenvalues α1 ≥ · · · ≥ αn,
Q ∈ Cn×(n−1) such that Q∗Q = In−1, and B = Q∗AQ ∈ C(n−1)×(n−1) with eigenvalues
β1 ≥ · · · ≥ βn−1. Then,

α1 ≥ β1 ≥ α2 ≥ β2 ≥ · · · ≥ βn−1 ≥ αn,

and we say that the eigenvalues of A are interlaced with those of B.

Proof. In view of Theorem 3.2.1, we have

βk = max
U ⊂ Cn−1

dim(U) = k

min
x ∈ U
x ̸= 0

x∗Bx

x∗x
= min

x ∈ Ũ
x ̸= 0

x∗Q∗AQx

x∗Q∗Qx
,

where Ũ is a k-dimensional subspace of Cn−1 where the maximum is attained. Let
Û = QŨ = {y ∈ Cn : y = Qx, for some x ∈ Ũ}, then dim(Û) = k and

βk = min
x ∈ Ũ
x ̸= 0

x∗Q∗AQx

x∗Q∗Qx
= min

y ∈ Û
y ̸= 0

y∗Ay

y∗y
≤ max

Û ⊂ Cn

dim(Û) = k

min
y ∈ Û
y ̸= 0

y∗Ay

y∗y
= αk.

The inequality βk−1 ≥ αk is obtained applying the same argument to the matrices −A
and −B.

A direct consequence of Corollary 3.2.2, obtained by considering a subset of n − 1
columns of the identity matrix for Q, is that the eigenvalues of a Hermitian matrix are
interlaced by those of any (n−1)× (n−1) principal submatrix. Repeating the argument
for smaller principal submatrices leads to the following result known in the literature as
Cauchy’s interlacing theorem.

Corollary 3.2.3. Let A ∈ Cn×n be a Hermitian matrix with eigenvalues α1 ≥ · · · ≥ αn
and let B ∈ Cm×m be a principal submatrix of A, for m ≤ n, with eigenvalues β1 ≥
· · · ≥ βm. Then

αj ≥ βj ≥ αj+(n−m),

for j = 1, . . . ,m.

Proof. The rigorous proof is left as an exercise to reader; hint: proceed by induction.

Other interesting byproducts of Courant-Fischer’s result concern the eigenvalues of
the sum of Hermitian matrices. We report below a couple of results without proof (left
as exercise), that will be useful in the next section.

Corollary 3.2.4. Let A,B,C be Hermitian matrices with ordered eigenvalues αj , βj , γj
and such that A = B + C. Then it holds:

βj + γn−j+i ≤ αi ≤ βk + γi−k+1,

for 1 ≤ k ≤ i ≤ j ≤ n.

30

Corollary 3.2.5. Let A = B + uu∗ ∈ Cn×n for B Hermitian and u ∈ Cn and let αj , βj
be the ordered eigenvalues of A and B, respectively. Then:

βj ≤ αj ≤ βj+1,

for j = 1, . . . , n (βn+1 =∞).

3.3 The divide-and-conquer method for Hermitian tridiagonal matrices

In the case of a Hermitian eigenvalue problem, the Hessenberg reduction returns a Her-
mitian tridiagonal matrix. In that case, there is an alternative approach, with respect
to the QR method, to retrieve the eigenvalues and the eigenvectors. To simplify the
exposition we consider a real symmetric triadiagonal matrix of the form

T =

a1 b1

b1
. . .

. . .
. . .

. . . bn−1

bn−1 an

 ,
although, all we are going to see extends with no major difficulties to the complex
Hermitian case. The key idea is that the tridiagonal matrix T can be block diagonalized
by means of a rank 1 symmetric perturbation, i.e.:

T =

a1 b1

b1
. . .

. . .
. . .

. . . bm−1

bm−1 am − bm
am+1 − bm bm+1

bm+1
. . .

. . .
. . .

. . . bn−1

bn−1 an

+

bm bm
bm bm

=

[
T1

T2

]
+ bmvv

∗, v =

[
em
e1

]
.

Let us assume that we have already computed (for instance by recursion) the eigende-
compositions Ti = QiΛiQ

∗
i , i = 1, 2. Then, the eigenvalues of T and those of T1, T2 are

related by

T =

[
Q1Λ1Q

∗
1

Q2Λ2Q
∗
2

]
+ bmvv

∗ =

[
Q1

Q2

]([
Λ1

Λ2

]
+ ρuu∗

)[
Q∗

1

Q∗
2

]
,

where

u =

[
Q∗

1

Q∗
2

]
v =

[
Q∗

1em
Q∗

2e1

]
=

[
last column of Q∗

1

first column of Q∗
2

]
.

31

Therefore, the eigenvalues of T coincides with those of D+ρuu∗; we focus on the problem
of “updating” the eigenvalues of a diagonal matrix when a rank 1 symmetric modification
is applied. We start with some simplifications:

• D =

d1 . . .

dn

 is such that d1 > d2 > · · · > dn,

• all the entries uj of the vector u are non zero.

Later on, we will comment on how to deal with the general scenario.
Under these assumptions the eigenvalues of D and those of D + ρuu∗ are different,

and this implies

0 = det(D + ρuu∗ − λI) = det(D − λI) det(I + ρ(D − λI)−1uu∗)

⇔ 0 = det(I + ρ(D − λI)−1uu∗) = 1 + ρu∗(D − λI)−1u =: f(λ).

Taking a closer look at f(λ) we see that

f(λ) = 1 + ρ

n∑
j=1

u2j
dj − λ

,

that is a rational function whose poles (vertical asymptotes) coincide with d1, . . . , dn.
The equation f(λ) = 0 is said secular equation.
With a direct computation we get that

f ′(λ) = ρ
n∑
j=1

u2j
(dj − λ)2

,

that implies the strict monotonicity of f(λ) in all the intervals where it is defined. In
particular, f(λ) has exactly n roots λ1, . . . , λn and, in view of Courant-Fischer’s result
about the eigenvalues of sums of Hermitian matrices, we have that

dj ≤ λj ≤ dj−1, λ1 ≥ d1 if ρ > 0,

dj+1 ≤ λj ≤ dj , λn ≤ dn if ρ < 0.

Since the intervals [dj , dj+1] are a quite good estimate of where to find the λjs and f(λ)
is monotonic and smooth inside these intervals, we can compute the roots of f(λ) by
means of n runs of an optimization method, like the Newton iteration. Once the values
λj are computed, we can retrieve the associated eigenvectors of D + ρuu∗ by leveraging
the following result.

Lemma 3.3.1. If λj is an eigenvalue of D+ρuu∗ then (D−λjI)−1u is a corresponding
eigenvector.

32

Proof. With a direct computation we find

(D + ρuu∗)(D − λjI)−1u = (D − λjI + λjI + ρuu∗)(D − λjI)−1u

= u+ λj(D − λjI)−1u+ [ρu∗(D − λjI)−1u︸ ︷︷ ︸
f(λj)−1

]u

= u+ λj(D − λjI)−1u− u = λj(D − λjI)−1u.

The recursive procedure for computing the eigendecomposition of T , that directly
comes from the analysis performed in this section, is reported in Algorithm 5. We point
out that there are some criticalities that makes Algorithm 5 numerically unstable but
the latter can be addressed in an effective manner. In particular, some care has to be
taken at the following points:

• One has to handle the cases where dj = dj+1 or uj = 0, for one or several values
of j (deflation).

• When |dj − dj+1| is small (but not negligible), the Newton’s method struggle or
even do not find the root of f(λ) contained in [dj+1, dj] because of the almost
flat derivative of f in the inner part of the interval. To overcome this, a modified
Newton’s iteration has to be implemented.

• When |λj−λj+1| is small, the formula for the eigenvector coming from Lemma 3.3.1
can be unstable. The problem is that (D − λjI)

−1u and (D − λj+1I)
−1u are

supposed to yield orthogonal vectors. However, since the entry dj is close to both
λj and λj+1, there is a great deal of cancelation when evaluating dj−λj , dj−λj+1,
and when evaluating the secular equation in the Newton iteration. In particular,
the computed dj − λj and dj − λj+1 may contain large relative errors and the
corresponding eigenvectors may be inaccurate and far from orthogonal.

3.3.1 Handle deflation

First, observe that, by applying a permutation matrix Π on the left and its inverse ΠT

on the right of D + ρuuT , we can always retrieve the condition d1 ≥ d2 ≥ · · · ≥ dn for
the diagonal entries of D. In the case of uj = 0 or dj = dj+1 for certain values of j the
corresponding eigenvalues and eigenvectors can be given immediately. Indeed, if there
are zero entries in u then we have

(uj = 0 ⇔ uT ej = 0) ⇒ (D + ρuuT)ej = djej . (3.1)

Thus, if an entry of u vanishes we can read the eigenvalue from the diagonal of D at
once and the corresponding eigenvector is a coordinate vector. If identical entries occur

33

Algorithm 5 Divide-and-conquer method for a tridiagonal symmetric T ∈ Cn×n

1: procedure d&c(T)
2: if n=1 then
3: Q← 1, Λ← T
4: else

5: T =

[
T1

T2

]
+ ρvv∗

6: [Q1,Λ1]← d&c(T1)
7: [Q2,Λ2]← d&c(T2)
8: Compute D and u
9: Retrieve the eigenvalues of D + ρuu∗ by means of the Newton method

10: Compute the eigenvector matrix Q′ of D + ρuu∗ with Lemma 3.3.1
11: end if
12: end procedure

in the diagonal of D, say dj = dj+1, then we can find a Givens rotation G such that it
introduces a zero into the j + 1-th position of u

Gu =

u1
...

uj−1√
u2j + u2j+1

0
uj+2
...
un

.

Note that, since dj = dj+1 we also have the property GDGT = D. So, if there are
multiple eigenvalues in D we can reduce all but one of them by introducing zeros in u
and then proceed as previously in (3.1). When working with floating point numbers we
deflate if

|ui| ≤ Cu||T ||2, |dj − dj+1| ≤ Cu||T ||2,

where C is a small constant and u is the machine precision.

3.3.2 Modified Newton iteration (Additional, not done during the lectures)

As said previously, Newton’s iteration to solve f(λ) = 0 does not work when some
weights ui are small, as the tangent at certain points in (di+1, di) crosses the real axis
outside this interval. Since f(λ) is not well approximated (locally) by a straight line,
the zero finder has to be adapted in such a way that it captures the poles at the interval
endpoints. The idea is to choose the next point in the Newton iteration as the zero in

34

(di+1, di) of the ansatz

h(λ) =
c1

λ− di
+

c2
λ− di+1

+ c3, (3.2)

for certain parameters c1, c2, c3. Once the parameters ci are fixed, the solution of h(λ) =
0 are obtained by solving the equivalent quadratic equation

c1(di+1 − λ) + c2(di − λ) + c3(di − λ)(di+1 − λ) = 0.

To determine the parameters ci we rewrite f(λ) as

f(λ) = 1 + ρ
i∑

j=1

u2j
λ− dj︸ ︷︷ ︸

ψ1(λ)

+ ρ
n∑

j=i+1

u2j
λ− dj︸ ︷︷ ︸

ψ2(λ)

= 1 + ψ1(λ) + ψ2(λ).

For the current iterate λ̃ ∈ (di+1, di) of the (modified) Newton iteration, we look for
approximants h1(λ), h2(λ) of ψ1(λ) and ψ2(λ), such that

h1(λ) = ĉ1 +
c1

di − λ
, h1(λ̃) = ψ1(λ̃), h′1(λ̃) = ψ′

1(λ̃),

h2(λ) = ĉ2 +
c2

di+1 − λ
, h2(λ̃) = ψ2(λ̃), h′2(λ̃) = ψ′

2(λ̃).

It is easy to verify that this yields the following expressions for c1, c2, c3:

c1 = ψ′
1(λ)(di − λ̃)2, ĉ1 = ψ1(λ̃)− ψ′

1(λ)(di − λ̃),

c2 = ψ′
2(λ)(di+1 − λ̃)2, ĉ2 = ψ2(λ̃)− ψ′

2(λ)(di+1 − λ̃),
c3 = 1 + ĉ1 + ĉ2.

We remark that, the stable implementation of the eigenvectors computation requires
that the secular equation solver is applied to the shifted function g(h) = f(dj+h) where
dj is the diagonal entry of D that is closest to the root. If, for instance, we look for the
root in (di+1, di), we can understand who of the two extrema is the closest by evaluating
f(λ) at the mid point of the interval.

3.3.3 Computing the eigenvectors stably

To compute the eigenvector stably we can not directly rely on the formula given in
Lemma 3.3.1, when the difference λj − di has an error of size O(u|di|) instead of only
O(u|λj−di|). To deal with this issue, we rely on the previously described shift of variables
in the secular equation solver, to directly approximate the smallest distance λj − di, for
every i. Once the eigenvalues are approximated, a vector û could be computed such
that the λi are accurate eigenvalues of D + ρûû. If û approximates well the original u
then the new eigenvectors will be the exact eigenvectors of a slightly modified eigenvalue
problem, which is all we can hope for. To get vector û, we rely on the following result.

35

Lemma 3.3.2. Let D = diag(d1, . . . , dn) with d1 > · · · > dn, ρ > 0, and λ1 > · · · > λn
satisfying the interlacing property

dn < λn < · · · < di+1 < λi < di < · · · < d1 < λ1.

Then there is a vector û such that the λi are the exact eigenvalues of D̂ = D + ρûûT .
The entries of û are given by

|ûi| =

n∏
j=1

(λj − di)

ρ
n∏

j = 1
j ̸= i

(dj − di)

1
2

.

Proof. The characteristic polynomial of D̂ can be written both as det(D̂ − λI) =∏n
j=1(λj − λ) and as

det(D̂ − λI) =

 n∏
j=1

(dj − λ)

 ·
1 + ρ

n∑
j=1

û2j
dj − λ

=

 n∏
j=1

(dj − λ)

 ·
1 + ρ

n∑
j = 1
j ̸= i

û2j
dj − λ

+ ρ

 n∏
j = 1
j ̸= i

(dj − λ)

 · û2i .
Setting λ = di and equating both expressions for det(D̂ − λI) we get

û2i =

∏n
j=1(λj − di)

ρ
n∏

j = 1
j ̸= i

(dj − di)
.

Remark 3.3.3. The sign of each entry ûi of û is chosen as the one of the corresponding
entry in u, so that D+ρûûT and D+ρuuT are close. A result analogous to Lemma 3.3.2
holds for the case ρ < 0 and the associated interlacing property.

Finally, the stable procedure for computing the eigenvectors works as follows:

(i) Solve the (shifted) secular equations to get the approximated eigenvalues λj and
the smallest distances λj − di.

(ii) Compute û by means of the formula given in Lemma 3.3.2 and Remark 3.3.3.

(iii) Compute the eigenvectors of D + ρûûT via Lemma 3.3.1.

36

3.4 The Singular Value Decomposition

We shall now introduce an important factorization for a generic rectangular matrix A,
which is called singular value decomposition (SVD). The idea behind this factorization
is to decompose any linear operator as the product of three matrices, here reported for
the case m ≥ n:

A = UΣV ∗, Σ =

σ1

. . .

σn

 ,
The matrices U, V are unitary, Σ is real and diagonal, and σ1 ≥ σ2 ≥ . . . ≥ σn ≥ 0. Here
by “diagonal” we mean that Σ may be rectangular, but has non-zero entries only on the
diagonal entries Σii. The case reported above is for m ≥ n, but the analogue definition
can be given for n ≥ m.

Geometrically, we can interpret this factorization as the decomposition of the action
of A into an isometry, followed by a (non-negative) scaling of the axes, and then again
by an isometry. The factorization can be used to provide several explicit solutions to
computational problems.

3.4.1 Existence and uniqueness

We now prove that the singular value decomposition exists for any matrix.

Theorem 3.4.1 (Existence of the SVD). Let A ∈ Cm×n with m ≥ n. Then, there exist
two unitary square matrices U, V of size m ×m and n × n, respectively, and an m × n
matrix Σ with non-negative diagonal with decreasing entries and zero elsewhere, such
that A = UΣV ∗. If A is real, U and V can be chosen real as well.

Proof. We prove this result by induction over n; let n = 1, and m be arbitrary. Then,
A is a column vector and we may set

U =

 1
∥A∥2

A B

 , Σ =

∥A∥2
0
...
0

 , V =
[
1
]
,

where B ∈ Cm×(m−1) is a completion of 1
∥A∥2

A to an orthogonal basis of Cm. By direct

verification, we have A = UΣV ∗, and the three matrices satisfy all the requirements to
be an SVD of A.
Assume now that the result is valid for n− 1 (and arbitrary m). Then, by definition

of spectral norm there exists a vector v1 of unit norm such that

w = Av1, ∥w∥2 = ∥A∥2.

37

If A = 0 the SVD is obtained in a trivial way, hence we can assume that ∥w∥2 ̸= 0 and

define the matrices Û , V̂ as follows:

Û :=

 w
∥w∥2

w2 . . . wm

 , V̂ :=

v1 v2 . . . vn

 ,
where w2, . . . , wm and v2, . . . , vn are chosen as any unitary completion of the first column.
We now claim that the matrix Û∗AV̂ has the following form:

Û∗AV̂ =

∥A∥2 0 . . . 0

0
... Â
0

 .
The fact that the entry in position (1, 1) is equal to ∥A∥2 can be verified directly:

(Û∗AV̂)11 = (Ûe1)
TA(V̂ e1) =

1

∥w∥2
w∗Av1 =

w∗w

∥w∥2
= ∥w∥2 = ∥A∥2. (3.3)

If any other entry in the first column or row were different from zero, then the matrix
A would have a column or row with Euclidean norm strictly larger than ∥A∥2, which is
a contradiction. Hence, the sparsity structure in (3.3) is an immediate consequence of
(Û∗AV̂)11 = ∥A∥2.

We may now make use of the inductive hypothesis to obtain an SVD of Â = Ũ Σ̃Ṽ ∗,
and to write the following decomposition for A:

A = Û

[
1

Ũ

]
︸ ︷︷ ︸

U

∥A∥2

σ̃1
. . .

σ̃n−1

[
1

Ṽ ∗

]
V̂ ∗︸ ︷︷ ︸

V ∗

.

Up to calling the above unitary matrices U and V , and setting σ1 := ∥A∥2 and σi := σ̃i−1

for i > 1, this is an SVD of the matrix A. The only remaining fact to check is that the
singular values are in decreasing order, that is σ̃1 ≤ ∥A∥2. To this aim, we may note
that for a diagonal matrix the norm is the maximum of the moduli of the entry on the
diagonal, which in turn implies max{∥A∥2, σ̃1} = ∥A∥2 and therefore σ̃1 ≤ ∥A∥2.

An SVD of A is not necessarily unique. We observe that, given any diagonal uni-
tary matrix D, we can diagonally scale U and V to obtain A = UΣV ∗ = UDΣD∗V ∗.
Since UD ̸= U (unless D = I), we have an infinite number of different singular value
decompositions.

Exercise 3.4.2. Generically, the singular vector scaling described above is the only degree
of freedom in the decomposition. This is true unless two consecutive singular values
coincide (that is, σi = σi+1 for some i). Prove that this is true, and characterize the
additional degrees of freedom obtained in the non-generic situation.

38

Even though the factorization itself is not uniquely defined, the singular values are.
This will be immediately apparent when we will prove the properties of the SVD; we will
often need to refer to the ith singular value of A, for which we use the notation σi(A).

3.4.2 Properties of the SVD

We now present a few essential properties of the singular value decomposition.

Lemma 3.4.3. Let A = UΣV ∗ be a SVD of A ∈ Cm×n with m ≥ n. Then,

(i) The symmetric positive definite matrix A∗A is diagonalized by V : V ∗A∗AV =
Σ∗Σ = D, and has σ2i as eigenvalues with i = 1, . . . , n.

(ii) The symmetric positive definite matrix AA∗ is diagonalized by U : U∗AA∗U =
ΣΣ∗ = D, and has m− n zero eigenvalues, and the others equal to σ2i .

(iii) The following symmetric matrix M has ±σi and m− n zeros as eigenvalues:

M =

[
A∗

A

]
=⇒ Λ(M) = {±σi | σi singular value of A}.

Proof. The proof of (i) and (ii) are obtained by a direct computation. For what concerns
M , we make the following observation:[

V
U

]∗ [
A∗

A

] [
V

U

]
=

[
Σ∗

Σ

]
=:MΣ.

Since M and the MΣ are similar, they have the same eigenvalues, and we just need to
prove that the eigenvalues ofMΣ are ±σi and the m−n zeros. Consider the permutation
π of {1, . . . ,m+ n} such that

π(i) =

i+1
2 i ≡ 1 mod 2 and i ≤ 2n
i
2 + n i ≡ 0 mod 2 and i ≤ 2n

i 2n < i ≤ m+ n

.

If Π is the permutation matrix associated with π, computing Π∗MΣΠ yields a block
diagonal matrix of the following form:

Π∗MΣΠ =

Σ1

. . .

Σn
0m−n

 , Σi :=

[
0 σi
σi 0

]
.

The eigenvalues of the 2× 2 matrices Σi are exactly ±σi, so the claim follows.

Remark 3.4.4. From the definition of the SVD we immediately derive the invariance of
the singular values under unitary transformations: σi(A) = σi(QA) = σi(AZ) for any
choice of Q,Z unitary (orthogonal in the real case).

39

Lemma 3.4.5. Let A be an m × n matrix, with m ≥ n and SVD A = UΣV ∗. Then,
the following identities hold:

∥A∥2 = σ1(A), ∥A∥F =
√
σ21 + . . .+ σ2n.

Proof. The claim follows noting that, being the spectral and Frobenius norm invariant
under unitary transformation, we have

∥A∥2/F = ∥UΣV ∗∥2/F = ∥Σ∥2/F ,

and by the definition of spectral and Frobenius norms.

Exercise 3.4.6. Show that, if a matrix is norm ∥·∥ is invariant under unitary transfor-
mation, then it can be written in the form ∥A∥ = f(σ1(A), . . . , σn(A)) for some f .

3.4.3 The Eckart-Young-Mirsky theorem

The singular value decomposition gives an explicit and constructive answer to the low-
rank approximation problem of finding B of rank at most k that minimizes ∥A−B∥,
with respect to the spectral or Frobenius norm.
This has applications to data compression (a low-rank matrix is much cheaper to store

than a full one), data analysis, and much more.

Theorem 3.4.7. Let A ∈ Cm×n, and A = UΣV ∗ its SVD. Let Ak be defined as follows:

Ak := UΣkV
∗, Σk :=

σ1

. . .

σk

 ,
where Σk is equal to Σ with σk+1, . . . , σmin{m,n} set to zero. Then, the following hold
true:

(i) The matrix Ak satisfies σk+1 = ∥A−Ak∥2 ≤ ∥A−B∥2 for any matrix B with rank
less or equal to k.

(ii) The matrix Ak satisfies
√
σ2k+1 + . . .+ σ2min{m,n} = ∥A−Ak∥F ≤ ∥A−B∥F for

any matrix B with rank less or equal to k.

To prove this result, we proceed as follows:

• First, we prove claim (i) for ∥·∥2;

• Then, we use it to show an auxiliary Lemma about the singular values of A1+A2,
the sum of two arbitrary matrices.

• Finally, we use the Lemma to prove the result for (ii).

40

Proof of Theorem 3.4.7 for ∥·∥2. We first check that ∥A−Ak∥2 = σk+1. For simplicity,
we assume throughout the proof that m ≥ n, the other case can be obtained transposing
A, or with minimal modifications to the indices. Using the SVD, we get

A−Ak = U(Σ− Σk)V
∗ = U

0
. . .

0
σk+1

. . .

σn

V ∗.

Taking norms yields ∥A−Ak∥2 = ∥Σ− Σk∥2 = σk+1, where we have used the invariance
of the spectral norm under unitary transformations, and that the 2-norm of a diagonal
matrix is the maximum of the moduli of the diagonal elements.
To conclude we need to check that, for any matrix B of rank at most k, ∥A−B∥2 ≥

σk+1. We choose a unit norm vector v from the subspace Ker(B)∩colspan{v1, . . . , vk+1}
where vj := V ej are the columns of V . Since Ker(B) has dimension at least n− k, the
intersection of the subspaces has dimension at least 1, and this is always possible. We
can write such vector v in coordinates with respect to the columns of V :

v =
k+1∑
j=1

αjvj = V α, α :=

α1
...

αk+1

0
...
0

,

k+1∑
j=1

|αj |2 = 1.

This yields an explicit expression for (A−B)v, of the form

(A−B)v = Av = UΣV ∗v = UΣα = U

σ1α1
...

σk+1αk+1

0
...
0

.

The Euclidean norm of (A−B)v can be bounded below as follows:

∥(A−B)v∥22 =
k+1∑
j=1

σ2jα
2
j ≥ σ2k+1

k+1∑
j=1

α2
j = σ2k+1.

Since ∥A−B∥2 ≥ ∥(A−B)v∥2 for any ∥v∥2 = 1, this proves the claim.

41

We now use the proof of Theorem 3.4.7 in the spectral norm case to state a Lemma
known as one of the Weyl’s inequalities. These inequalities provide upper and lower
bounds for the eigenvalues of symmetric matrices and singular values. In the symmetric
case, the main tool to prove them is the Courant-Fischer theorem. A good reference for
further info on this topic are [3, 4].

Lemma 3.4.8 (Weyl). Let A1, A2 be two matrices of compatible sizes, and A = A1+A2.
Then, for any i, j ≥ 0,

σi+j+1(A) ≤ σi+1(A1) + σj+1(A2),

where we set σk(A) = 0 for any k larger than the smallest dimension of A.

Proof. Thanks to Theorem 3.4.7 we know that there exist two matrices Ai,1 and Aj,2 of
rank at most i and j, respectively, such that

∥A1 −Ai,1∥2 = σi+1(A1), ∥A2 −Aj,2∥2 = σj+1(A2).

If we set B := Ai,1 +Aj,2 we have that rank(B) ≤ i+ j, and therefore, again in view of
Theorem 3.4.7,

σi+j+1(A) ≤ ∥A−B∥2 = ∥A1 −Ai,1 +A2 −Aj−2∥2
≤ ∥A1 −Ai,1∥2 + ∥A2 −Aj,2∥2 = σi+1(A1) + σj+1(A2).

Exercise 3.4.9. Show that Weyl’s Lemma implies the subadditivity of the spectral norm
as a corollary.

We now have all the tools to prove the second part of Theorem 3.4.7, concerning the
Frobenius norm.

Proof of Theorem 3.4.7 for ∥·∥F . The prove the second part of the theorem we start by
verifying ∥A−Ak∥2F = σ2k+1 + . . .+ σ2n. This follows by the same argument used for the
spectral norm, recalling that the square Frobenius norm is the sum of the squares of the
entries in a matrix.
We now take B to be any matrix of rank at most k, and claim that

∥A−B∥2F ≥ ∥A−Ak∥
2
F = σ2k+1 + . . .+ σ2n.

Note that we may write

∥A−B∥2F =

n∑
l=1

σ2l (A−B).

Decomposing A = (A−B) +B and using Weyl’s inequality with i = l− 1 and j = k we
get

σ2l+k(A) ≤ σ2l (A−B) + σ2k+1(B) = σ2l (A−B).

Using this inequality in the previous identity and dropping the zero terms from the
summation yields

∥A−B∥2F =

n∑
l=1

σ2l (A−B) ≥
n−k∑
l=1

σ2l+k(A).

42

3.4.4 Computing the SVD

So far, we have not discussed how an SVD of a generic matrix A should be computed
in practice, we have only proved its existence and uniqueness up to selected degrees of
freedom.
Algorithms for the SVD can be obtained by trying to rephrase the computation to a

symmetric eigenproblem. We now make the simplifying assumption that m = n, but it
is not difficult to adapt all results with appropriate padding with zero.
The first step is to find orthogonal matrices Q,Z such that

QAZ∗ = B =

× ×

. . .
. . .
. . . ×

×

This is easily achieved by adapting the construction already seen for the upper Hes-
senberg form, exploiting the degrees of freedom by having two different unitary matrix
Q,Z, instead of imposing Q = Z. The cost of this reduction is O(n3) flops for an n× n
matrix.
Computing the SVD of B is equivalent to computing the SVD of A. Indeed, if B =

UΣV ∗ then we can retrieve an SVD of A by:

A = QBZ∗ = QUΣV ∗Z∗ = (QU)Σ(ZV)∗.

Thanks to this observation, we shall now assume that A is bidiagonal from the beginning.
Recall that the SVD is linked with the eigenvalue problems for AA∗ and A∗A, which

are both tridiagonal matrices. Hence, we can use the QR iteration to find one of

U∗AA∗U = Σ2, V ∗A∗AV = Σ2.

Any of these choices produce a sequence of tridiagonal matrices Tℓ that converges to Σ2.
However, computing the square of the singular values is inconvenient from the numerical
view point, because will make small singular values even smaller, which amplifies their
relative error. Therefore, if after ℓ steps of QR iteration we have Q∗

ℓAA
∗Qℓ = Tℓ, we

select a unitary matrix Zℓ such that

Q∗
ℓAZℓZ

∗
ℓA

∗Qℓ = Tℓ,

by imposing that Q∗
ℓAZℓ is upper bidiagonal. Such Zℓ can be easily computed directly

into the chasing procedure, by considering Bℓ := Q∗
ℓAZℓ instead of Tℓ. It is then easy to

check that we must have Q∗
ℓAZℓ → Σ, and therefore Qℓ → U∗ and Zℓ → V ∗. This idea

is equivalent to approximating the factors of the Cholesky factorization of Tℓ = LLT

(L here is lower or upper triangular), which exist for all symmetric positive definite
matrices, and allow to avoid the problem of squaring the singular values.

Essentially all algorithms for symmetric eigenproblems (and not just the tridiagonal
QR) can be adapted to compute the SVD. We do not discuss them further, but details
on these ideas can be found in [1].

43

4 Least squares problems

Whenever a matrix A is square and invertible, solving a linear system Ax = b can be
pursued with standard tools such as the LU decomposition or the QR factorization. The
condition number of this problem is well known to be ∥A∥∥A−1∥, and for the spectral
norm can be linked to the singular values by σ1(A)/σn(A).
We now focus on the more general problem of computing the solution to Ax = b

whenever:

• A is rectangular, with more rows than column (an overdetermined system).

• A is rectangular, with more columns than rows (an underdetermined system).

• Any of the above, possibly even a square case, but with A with a large condi-
tion number, so that the problem is intractable with standard tools, because the
solution would be completely polluted by floating point errors.

All these cases can be effectively analyzed and solved using the SVD. Note that they
can be wildly different: in the first case there could be no solution, whereas in the second
we may end up with a lot of different solutions and we need a way to select the “right”
one.
In all the above cases, where the solution of the linear system may not exist, it makes

sense to transform the problem into finding a minimizer for the functional

Φ(x) := ∥Ax− b∥22.

When there will be multiple minimizers, we will add additional constraints to select the
desired ones (for instance, by picking the one that minimizes ∥x∥2 as well).

4.1 Normal equations for overdetermined full rank least squares problems

We now make the simplifying assumption that A is m × n with m ≥ n, and full rank.
Let us rewrite Φ(x) in a way that is more amenable to compute its derivatives. In the
real case we have

Φ(x) = (Ax− b)T (Ax− b) ∇Φ(x) = 2(ATAx−AT b)
∇2Φ(x) = 2ATA.

If A is full rank, then ATA is positive definite and therefore Φ(x) is convex, and has a
unique minimum. A similar derivation can be given in the complex case considering the
derivatives ∂

∂z and ∂
∂z . Hence, the minimum point can be found by setting solving

∇Φ(x) = 0 ⇐⇒ A∗Ax = A∗b.

The linear system with A∗A arising from these considerations goes under the name of
normal equations. They are a good choice for well-conditioned problems (more on this
later), but can encounter loss of accuracy otherwise.

44

We have not yet defined precisely what the condition number of a least squares prob-
lems should be, but it is worth noting that the condition number of A∗A is given by
σ21(A)/σ

2
n(A). Indeed, using A = UΣV ∗,

κ2(A
∗A) = ∥A∗A∥2∥(A

∗A)−1∥ = ∥V Σ∗ΣV ∥2∥V (Σ∗Σ)−1V ∥2 =
σ21(A)

σ2n(A)
.

If we apply normal equations in the particular case of a square and invertible matrix A,
we notice already that we are solving a problem that is numerically more challenging
than it should be: we would expect a condition number of σ1(A)/σn(A), and instead we
are faced with its square. This situation can be avoided by relying on different solution
methods.

4.1.1 Solving least squares problem using the QR and the SVD

Consider a full-rank overdetermined least squares problem of the form min ∥Ax− b∥22. If
b does not belong to the column span of A, we cannot hope to achieve an exact solution
Ax = b. To describe the possible situations, we introduce the definition of angle between
a vector and a subspace.

Definition 4.1.1. Let U ⊆ Cn be a subspace, and v any non-zero vector in Cn. Then,
the cosine and sine of the angle θ(U , v) between v and U are defined by

cos θ(U , v) :=
∥ΠUv∥2
∥v∥2

, sin θ(U , v) :=
∥ΠU⊥v∥2
∥v∥2

.

where ΠU and ΠU⊥ denote the orthogonal projections on U and U⊥, respectively. By a
slight abuse of definition, we write θ(A, v) to denote θ(colspan(A), v).

Exercise 4.1.2. Show that this definition matches the one for the cosine of the angle
between two vectors v and w by considering U = span(w), and this makes the notation
θ(w, v) defined above compatible with the previous definition.

Clearly, an exact solution to Ax = b exists if and only if θ(A, b) = 0. How do we
compute the angle? If A = QR is an economy-size QR factorization of A, we may write
the orthogonal projection onto colspan(A) as QQ∗, and therefore:

cos(θ(A, b)) = ∥QQ∗b∥2/∥b∥2 = ∥Q
∗b∥2/∥b∥2.

Similarly, we can write sin(θ(A, b)) = ∥QQ∗b− b∥2/∥b∥2. The economy-size QR factor-
ization can be used to provide an explicit expression of the solution and of the residual.

Lemma 4.1.3. Let A ∈ Cm×n with m ≥ n a full rank matrix, and A = QR its economy-
size QR factorization. Then, the solution of the least squares problem minx ∥Ax− b∥22 is
given by x = R−1Q∗b, and the residual is equal to ∥(I −QQ∗)b∥2.

45

Proof. If A = QR is an economy-size QR factorization of A, we may write

Ax− b = QRx− b = Q(Rx−Q∗b) + (I −QQ∗)b,

where we have used I = QQ∗ + (I −QQ∗). Taking norms yields

∥Ax− b∥22 = ∥Rx−Q
∗b∥22 + ∥(I −QQ

∗)b∥22,

where we have exploited the identity ∥v + w∥22 = ∥v∥
2
2 + ∥w∥

2
2 whenever v ⊥ w. Clearly,

the term on the right is independent of x, and therefore the residual of the least squares
system satisfies ∥Ax− b∥2 ≥ ∥(I −QQ∗)b∥2 no matter what we choose for x. On the
other hand, we can make the norm of the first term equal to zero by choosing x =
R−1Q∗b, since R is invertible thanks to the full-rank assumption for A.

Lemma 4.1.3 provides a theoretical characterization of the solution and the residual,
but it also gives an algorithm to compute it. We may note that this algorithm requires
to solve a linear system with R, whereas for normal equations we needed to solve one
with A∗A. If A = UΣV ∗, we can write a singular value decomposition for R as follows:

R = Q∗A = Q∗UΣV ∗ =⇒ σ1(R)

σn(R)
=
σ1(A)

σn(A)
.

In particular, the condition number of the linear system under consideration is the square
root of the one of A∗A. We may wonder if this is truly the condition number of the
underlying problem, or we can still improve the situation. The next lemma shows that
what we are doing is already optimal.

Lemma 4.1.4. Let A ∈ Cm×n be a full rank matrix, and b, δb ∈ Cm. Then, if
x is the solution of the least squares problem minx ∥Ax− b∥2 and x + δx the one of
minx ∥A(x+ δx)− b− δb∥2, we have

∥δx∥2
∥x∥2

≤ σ1(A)

σn(A)

∥δb∥2
∥b∥2

1

cos(θ(A, b))
.

Proof. Thanks to Lemma 4.1.3 we can explicitly write the solutions to the least squares
problem using the QR factorization of A = QR:

x = R−1Q∗b x+ δx = R−1Q∗(b+ δb).

Subtracting these two terms implies δx = R−1Q∗δb, which gives the upper bound

∥δx∥2 ≤ ∥R
−1∥2∥Q

∗δb∥2 ≤
1

σn(A)
∥δb∥2,

where we have used σn(A) = σn(R) and that for an n × n square matrix M it holds
∥M−1∥2 = 1/σn(M). We can use once more the singular value decomposition of R to
write a lower bound for ∥x∥2 as follows:

∥x∥2 ≥ σn(R
−1)∥Q∗b∥2 =

1

σ1(R)
∥b∥2 cos(θ(A, b)).

Combining the two inequalities yields the sought claim.

46

The QR factorization is an effective method for solving the least square problem.
Recall that the QR factorization of A can be compute through a sequence of Householder
reflectors, obtaining a sequence of partial reductions

Pk . . . P1A =

[
Rk Xk

Yy

]
=

× . . . × × . . . ×
. . .

...
...

...

×
...

...
× . . . ×
...

...
× . . . ×

,

where Rk ∈ Ck×k, Xk ∈ Ck×(n−k), Yk ∈ Cm−k,n−k. Applying each of these reflectors
Pj to A costs O(mn) flops. Hence, the cost of finding the R in the QR factorization
is of O(mn2) flops, since n reflectors are required. The tall and thin Q matrix can be
computed at the same cost, but this is not really necessary for solving a least squares
problem.
Indeed, since Q∗ =

[
In 0

]
Pn . . . P1, we only need to compute

x = R−1Q∗b = R−1(
[
In 0

]
Pn . . . P1b).

Hence, we can apply the reflectors to b while we compute them and apply them to A
and its partial reductions, and extract its first n rows before solving the linear system
with R.

4.2 Underdetermined and rank-deficient systems

We now consider the case where A is possibly not-full rank, or the linear system is
underdetermined (i.e., n > m). In these cases, there may be multiple solutions to the
minimum problem ∥Ax− b∥2, and to have a well-defined problem we need to choose the
one to pick.
Let S(A, b) be the set of minimizers for the least squares problem:

S(A, b) := {x ∈ Cn | ∀y ∈ Cn ∥Ax− b∥2 ≤ ∥Ay − b∥2.} (4.1)

Then, we define the minimum norm solution to ∥Ax− b∥2 as x = argminx∈S(A,b) ∥x∥2.
It may not be immediately clear that this x is well-defined (i.e., that there is a unique
minimum point). This is however true, and we will characterize it with the introduction
of the Moore-Penrose pseudoinverse.

Definition 4.2.1. Let A ∈ Cm×n with SVD A = UΣV ∗. Then, the Moore-Penrose
pseudoinverse of A is the n×m matrix

A† := V Σ†U∗, Σ† = diag(σ†1, . . . , σ
†
min{m,n}) ∈ Cn×m

where σ†j = 1/σj if σj ̸= 0, or 0 otherwise.

47

If A is an invertible square matrix, then the pseudoinverse is exactly the standard
matrix inverse, and we have A† = A−1.

Exercise 4.2.2. Prove that if A ism×n withm ≥ n and full-rank, then A† = (A∗A)−1A∗.
If instead n ≥ m, and A is full rank, then A† = A(AA∗)−1.

Exercise 4.2.3. Prove that (A∗)† = (A†)∗.

Theorem 4.2.4. Let A ∈ Cm×n, and S(A, b) the set of least squares solutions to
min ∥Ax− b∥2 as in (4.1). Then, the vector x := A†b satisfies x = argminx∈S(A,b)∥x∥2.

Proof. Let p be the number of singular values of A equal to zero. Then, we may write
the SVD of A in blocks as follows:

A =

U1 U2

[Σ1 0p,n−p
0m−p,p 0m−p,n−p

]V1 V2

∗

We may write the residual r := Ax− b as follows:

Ax− b = U(Σy − U∗b), y := V ∗x =

[
y1
y2

]
, U∗b =:

[
b1
b2

]
.

The partitioning of y and U∗b is chosen according to the partitioning of the SVD of A,
and using the invariance of the Euclidean norm under unitary transformations we obtain

∥Ax− b∥22 =
∥∥∥∥[Σ1 0p,n−p

0m−p,p 0m−p,n−p

] [
y1
y2

]
−
[
b1
b2

]∥∥∥∥2
2

=

∥∥∥∥[Σ1y1
0

]
−
[
b1
b2

]∥∥∥∥2
2

.

All minimizers in S(A, b) are obtained by setting y1 = Σ−1
1 b1, and choosing y2 arbitrarily.

Hence, since y = V ∗x we have

∥x∥22 = ∥y∥
2
2 = ∥y1∥

2
2 + ∥y2∥

2
2,

and therefore we have a unique minimum norm solution obtained by choosing y2 = 0.
We now need to check that this solution is exactly A†b:

A†b = V

[
Σ−1
1 0p,m−p

0n−p,p 0n−p,m−p

]
U∗b = V

[
Σ−1b1

0

]
= V

[
y1
0

]
.

The notation x = A†b is a handy way to write “the least-squares solution to Ax = b”,
no matter what the sizes or rank of A. Hence, we will often use it in the following
section. However, depending on the features of A, actually computing the pseudoinverse
may not be the best or more efficient way to computing x, as we have already discussed.

48

5 Krylov methods for linear systems

We now focus on the problem of solving a linear system Ax = b, assuming that A is
large and structured. Indeed, we know already that if A is “small”, say of size at most
1000 × 1000, then the LU decomposition, the Cholesky or the QR factorization are all
valid choices for this task.
However, we will often encounter problems where we are able to efficiently compute

v 7→ Av (and, if we are lucky w 7→ ATw), but unable to store all entries of A explicitly.
The most relevant example is when A is sparse, i.e., only O(1) entries per row are
non-zero.
Is the information obtained by performing matrix-vector products enough to solve a

linear system? It turns out that the answer is often yes, and the natural tool to answer
this question are Krylov subspaces.

5.1 Introduction to Krylov subspaces

An immediate observation is that, by combining at most ℓ − 1 products of A times a
vector, we can build all vectors of the form p(A)b where p(z) is a polynomial of degree
at most ℓ− 1. Is this enough to represent the solution x?

Lemma 5.1.1. Let A be any invertible square n × n matrix. Then, there exists a
polynomial p(z) of degree at most n− 1 such that, for any b ∈ Cn, x = A−1b = p(A)b.

Proof. The result is a simple consequence of the Hamilton-Cayley theorem, that tells us
that if q(z) := det(zI − A) then q(A) = 0. On the other hand, we have q(0) = det(A),
so we can rephrase this statement as follows:

0 = q(A)b = det(A)b+

n∑
j=1

qjA
jb =⇒ b =

−1
detA

n∑
j=1

qjA
jb.

Multiplying the above identity on the left by A−1 yields the claim:

x = A−1b =

 −1
detA

n−1∑
j=0

qjA
j

 b =: p(A)b.

Lemma 5.1.1 gives us a good and a bad news at the same time:

• The solution to the linear system Ax = b can be represented as a polynomial
in A multiplied by b: there is hope to extract all the required information from
matrix-vector products.

• The degree of such polynomial may be high, to the point of making such method
not practical.

The idea behind Krylov subspaces is that, even though the exact p(z) may be a high-
degree polynomial (it generally is), we may be able to find a lower degree approximation
that yields a good approximation x ≈ pℓ(A)b.

49

Definition 5.1.2. TheKrylov subspace of order ℓ associated withA and b is the subspace

Kℓ(A, b) := span(b, Ab, . . . , Aℓ−1b).

Often, we will find that dimKℓ(A, b) = ℓ, unless b belongs to a lower dimensional
invariant subspace. The idea behind Krylov methods is to look for an approximate
solution inside the subspace Kℓ(A, b). Depending on the criterion used to identity the
“optimal” solution, we can construct different methods. For instance, we may consider
the following options:

• We may ask that the residual rℓ := b−Axℓ is orthogonal to Kℓ(A, b). This choice
yields the Full Orthogonal Method (FOM).

• We may ask that the residual rℓ is minimized among all possible vectors xℓ ∈
Kℓ(A, b). That is, we choose

xℓ := argminx∈Kℓ(A,b)
∥b−Ax∥2.

This choice yields the Generalized Minimal Residual Method (GMRES).

Even though we know that for ℓ = n both choices will give us rℓ = 0, we are interested
in understanding the behavior for ℓ≪ n.

5.2 The Arnoldi iteration

Whenever we deal with subspaces, we do so by constructing appropriate bases. The
Krylov subspace Kℓ(A, b) is defined as the column span of the vectors Ajb for j =
0, . . . , ℓ− 1. These vectors, however, form a terrible basis from the computational point
of view.

Exercise 5.2.1. Show that if A is diagonal then the basis matrix

M =
[
b Ab . . . Aℓ−1b

]
is a (scaled) Vandermonde matrix with the eigenvalues of A as nodes. Show that for
any normal matrix Q the resulting M is unitarily similar to such scaled Vandermonde
matrix.

From the analysis of subspace iteration algorithms, we know that “good” bases are
orthogonal, and therefore we should aim at constructing an orthogonal basis for Kℓ(A, b).
In principle, this may be achieved by taking a QR factorization of the matrix with
columns Ajb. When the latter matrix is formed, however, the damage is already done.

We need to tweak the procedure of taking matrix-vector products with A to obtain an
orthogonal basis directly, by doing the reorthonormalization throughout the procedure.
The resulting algorithm is called Arnoldi iteration, and can be described as follows:

• We choose an initial vector v1 := b/∥b∥2

• For j = 1, 2, . . . we compute the action of A on vj , by setting wj+1 := Avj .

50

• The vector wj is orthogonalized with respect to the previous basis elements, and
then normalized:

vj+1 :=
wj+1 −

∑
i≤j(v

∗
iwj+1)vi

∥wj+1 −
∑

i≤j(v
∗
iwj+1)vi∥2

This procedure returns, for every ℓ, an orthogonal basis for Kℓ(A, b), unless b belongs
to an invariant subspace and therefore the norm at the denominator vanishes. This
possibility is called breakdown, and will be further analyzed later.
We note that, by defining hij := v∗iwj+1 = v∗iAvj , we obtain that the matrix Vℓ with

v1, . . . , vℓ as columns satisfies the following relation:

AVℓ = VℓHℓ + hℓ+1,ℓvℓ+1e
∗
ℓ . Hℓ :=

h11 h1,ℓ

h21 h22
...

. . .
. . .

...
hℓ,ℓ−1 hℓ,ℓ

 .
The matrix Hℓ is in upper Hessenberg form, since Avj is a linear combinations of the
first j + 1 columns of Vℓ, for any ℓ > j. This relation is known as the Arnoldi relation
and will be key in proving most convergence results about Krylov subspace methods.
We note that, up to adding another row to Hℓ and make it rectangular, we can rewrite

the Arnoldi relation in the more compact form:

AVℓ = Vℓ+1Ĥℓ, Ĥℓ :=

[
Hℓ

hℓ+1,ℓe
∗
ℓ

]
.

We will choose the most convenient form of the relation depending on the context.

5.3 The full-orthogonal method (FOM)

We can now formulate the full-orthogonal method (FOM), that builds an approximate
solution for the linear system Ax = b by imposing that the solution belongs to Kℓ(A, b),
and the residual rFOM

ℓ := b−AxFOM
ℓ is orthogonal to Kℓ(A, b). We shall call this solution

the FOM solution of order ℓ to Ax = b, and we can write it as xFOM
ℓ := Vℓy

FOM
ℓ .

Theorem 5.3.1. Let ℓ be a positive integer, and assume that Kℓ(A, b) has dimension ℓ
and Hℓ is invertible. Then, the FOM solution to the linear system Ax = b obtained by
imposing that rFOM

ℓ ⊥ Kℓ(A, b) exists, is unique, and is given by

xFOM
ℓ := Vℓy

FOM
ℓ , yFOM

ℓ := ∥b∥2 ·H
−1
ℓ e1.

Proof. The orthogonality condition can be expressed as

V ∗
ℓ (Ax

FOM
ℓ − b) = 0 ⇐⇒ V ∗

ℓ AVℓy
FOM
ℓ = V ∗

ℓ b = ∥b∥2e1.

Now, it suffices to note that, thanks to V ∗
ℓ vℓ+1 = 0 we have V ∗

ℓ AVℓ = Hℓ.

51

The FOM solution to the linear system is obtained by solving a much smaller linear
system with Hℓ = V ∗

ℓ AVℓ. Hence, it is very efficient to compute xℓ once the Krylov
subspace has been built using the Arnoldi iteration.
One may wonder if the invertibility assumption on Hℓ is actually needed, or can be

automatically derived from the invertibility of A. It turns out that in the general case
we can not avoid making this hypothesis, whereas under particular conditions this can
be automatically derived, as the next exercises show.

Exercise 5.3.2. Find an example of an invertible matrix A for which the FOM solution
is not defined (that is, Hℓ is not invertible) for at least some ℓ.

Exercise 5.3.3. Show that when A is symmetric (or Hermitian) and positive definite4,
then FOM solutions for all ℓ ≥ 1 are well-defined for the linear system Ax = b.

Exercise 5.3.4. Show that the existence and uniqueness property for the FOM solution
proved in the previous exercise also holds for any normal matrix A whose spectrum is
enclosed in a convex region that does not contain 0. Hint: Try to relate the eigenvalues
of A with the set W(A) = {x∗Ax | ∥x∥2 = 1} ⊆ C.
We now have a characterization of the FOM solution; the next natural step is under-

standing how accurate it can be, and the natural way of doing this is to bound the size
of ∥rFOM

ℓ ∥2.

Theorem 5.3.5. Let xFOM
ℓ = Vℓy

FOM
ℓ be the FOM solution to Ax = b after ℓ steps of

Arnoldi with no breakdown and Hℓ invertible. Then, the residue rFOM
ℓ = b − AxFOM

ℓ

satisfies
∥rFOM
ℓ ∥2 = |hℓ+1,ℓ| · |eTℓ yFOM

ℓ |.

Proof. Note that, by definition, the residual of FOM belongs to Kℓ+1(A, b) ∩ Kℓ(A, b)⊥.
Hence, we may write

∥rFOM
ℓ ∥2 = ∥v

∗
ℓ+1r

FOM
ℓ ∥

2
= ∥v∗ℓ+1Ax

FOM
ℓ ∥

2
,

where we have exploited that v∗ℓ+1b = 0. Using xFOM
ℓ = Vℓyℓ

FOM we get

∥rFOM
ℓ ∥2 = ∥v

∗
ℓ+1AVℓy

FOM
ℓ ∥

2
= ∥hℓ+1,ℓe

T
ℓ y

FOM
ℓ ∥2,

from which the claim follows.

Note that this result does not guarantee the monotonicity of the residuals: it could
happen that, even though we make an additional Arnoldi step to enlarge the search
space, the resulting approximate solution produced by FOM is larger.
The following example shows that both “good” and “bad” behaviors are found for

matrices with the same structure, depending if |ρ| > 1 or |ρ| < 1.

4We will later discover that in this special case FOM reduces to a well-known and much more powerful
method, known as Conjugate Gradient (CG).

52

Exercise 5.3.6. Let A and b be the following matrix and vector, for some ρ ̸= 0:

A =

ρ
−1 ρ

. . .
. . .

−1 ρ

 , b =

1
0
...
0

 .
Prove that the FOM residual satisfy ∥rFOM

ℓ ∥2 = ρ−ℓ for any ℓ < n, where n is the size
of A and b, and rFOM

n = 0.

5.4 GMRES

The fact that the FOM residual is not monotonically decreasing, and that solutions may
not even exist for some ℓ, can be disturbing. We note that we can easily fix this by
slightly modifying our request, and asking that the solution xℓ minimizes the residual
norm ∥Axℓ − b∥2. This choice produces the so called GMRES method (Generalized
Minimal RESidual). We can characterize the solution as follows.

Theorem 5.4.1. Let Vℓ, Hℓ be the matrices obtained after ℓ steps of Arnoldi without
breakdown. Then, the approximate solution xGMRES

ℓ ∈ Kℓ(A, b) that minimizes the resid-
ual norm ∥AxGMRES

ℓ − b∥2 over Kℓ(A, b) is given by:

xGMRES
ℓ = Vℓy

GMRES
ℓ , yGMRES

ℓ = ∥b∥2
[

Hℓ

hℓ+1,ℓe
T
ℓ

]†
e1,

where † denotes the Moore-Penrose pseudoinverse.

Proof. Note that if xℓ belongs to Kℓ(A, b) then the residual rℓ = Axℓ − b belongs to
Kℓ+1(A, b). Hence, by writing xℓ = Vℓyℓ we get

rℓ = Vℓ+1V
∗
ℓ+1rℓ = Vℓ+1

(
V ∗
ℓ+1AVℓyℓ − ∥b∥2e1

)
,

where we have used that V ∗
ℓ b = ∥b∥2e1. Since the columns of Vℓ+1 are orthonormal, we

have
∥rℓ∥2 = ∥V

∗
ℓ+1AVℓyℓ − ∥b∥2e1∥2.

By a direct computation we finally get:

V ∗
ℓ+1AVℓ =

[
Hℓ

v∗ℓ+1AVℓ

]
=

[
Hℓ

hℓ+1,ℓe
T
ℓ

]
.

We conclude by recalling that the Moore-Penrose pseudoinverse computes the least-
squares solution.

Recall that x = A†b corresponds to solving the least squares problem ∥Ax− b∥2, and
in practice this is not done by explicitly computing the pseudoinverse, but instead relying
on the QR factorization (assuming A is full-rank). We now want to build an algorithm

53

that, for any ℓ, produces a sequence of approximate solutions x1, x2, . . . , xℓ of the linear
system. The result (GMRES) is given in Algorithm 6.

Algorithm 6

1: procedure GMRES(A, b, ϵ)
2: V1 = [v1]← b/∥b∥2
3: for j = 1, 2, . . . do
4: wj+1 ← Avj
5: h1:j,j ← V ∗

j wj+1

6: wj+1 ← wj+1 − Vjh1:j,j
7: vj+1 ← wj+1/∥wj+1∥2
8: Vj+1 ←

[
Vj vj+1

]
9: yj+1 ← ∥b∥2

[
Hj

hj+1,je
T
j

]†
e1

10: rj+1 ←
[

Hj

hj+1,je
T
j

]
yj+1 − ∥b∥2e1

11: if ∥rj+1∥2 < ϵ then
12: return xj+1 := Vj+1yj+1

13: end if
14: end for
15: end procedure

In GMRES, the residual of the linear system is immediately available by

∥rGMRES
ℓ ∥2 = ∥Ax

GMRES
ℓ − b∥2 =

∥∥∥∥[Hℓ

hℓ+1,ℓe
T
ℓ

]
yGMRES
ℓ − ∥b∥2e1

∥∥∥∥
2

.

For this reason, there is no need for an analogue of Theorem 5.3.5; nevertheless, we will
see in the next section that the GMRES solution can be computed much more efficiently
than what appears from Algorithm 6, and the residual is immediately available even
without explicitly finding yGMRES

ℓ .

5.5 Solving the least squares GMRES problem

GMRES solves a least squares problem of the following form at each step

min
yℓ∈Cℓ

∥∥∥∥∥∥∥∥∥

h11 . . . h1ℓ
h21 . . . h2ℓ

. . .
...

hℓ+1,ℓ

[yℓ]1...
[yℓ]ℓ

−

∥b∥2
0
...
0

∥∥∥∥∥∥∥∥∥
2

By denoting with Ĥℓ the rectangular upper Hessenberg matrix of size (ℓ+1)× ℓ above,
this may be solved by computing a QR factorization Ĥℓ = QR, and obtaining the

54

equivalent linear system:

min
yℓ∈Cℓ

∥∥∥∥∥∥∥∥∥

r11 . . . r1ℓ

. . .
...
rℓ,ℓ
0

[yℓ]1...
[yℓ]ℓ

−

γ1
γ2
...

γℓ+1

∥∥∥∥∥∥∥∥∥
2

,

γ1
γ2
...

γℓ+1

 = Q∗

∥b∥2
0
...
0

The solution and the residual of the GMRES step are then available as

yℓ =

r11 . . . r1ℓ
. . .

...
rℓ,ℓ

−1 γ1...

γℓ

 , ∥rGMRES
ℓ ∥2 = ∥Ĥℓyℓ − ∥b∥2e1∥2 = |γℓ+1|. (5.1)

Generically, a QR factorization of a (ℓ+ 1)× ℓ matrix requires O(ℓ3) flops. This would
be a negligible cost in the first GMRES step, when ℓ≪ n. However, when the dimension
of the Krylov subspace grows, it may become relevant. Hence, we make the following
observations:

• The matrix Ĥℓ is upper Hessenberg, and therefore relatively close to upper trian-
gular; this allows us to compute a QR factorization using Givens rotations at a
quadratic cost (we can use the same trick in the QR iteration for eigenvalues).

• The two matrices Ĥℓ and Ĥℓ+1 are fairly close: if we know the QR factorization
of Ĥℓ we can obtain the one of Ĥℓ+1 at an even lower cost.

We proved the first item while dealing with the upper Hessenberg form in the QR
iteration, and more precisely in Lemma 2.10.5. In the current notation, it implies the
existence of a factorization

G1 . . . Gℓ

r11 . . . r1ℓ

. . .
...
rℓℓ

0 . . . 0

 = Ĥℓ, Gi = Ii−1 ⊕
[
ci si
−si ci

]
⊕ Iℓ−i−1.

This factorization allows us to rewrite the solution of the least squares problem in a
more explicit way:

yℓ =
[
R−1
ℓ 0ℓ×1

]
G∗
ℓ . . . G

∗
1∥b∥2e1 = ∥b∥2R

−1
ℓ

c1
c2s1
c3s2s1
. . .

cℓsℓ−1 . . . s1
sℓsℓ−1 . . . s1

 .

In addition, using Equation (5.1) we can derive an explicit formula for the residual
imposing xℓ = Vℓyℓ:

∥Axℓ − b∥2 = ∥e
T
ℓ+1G

∗
ℓ . . . G

∗
1∥b∥2e1∥2 = |sℓsℓ−1 . . . s1| · ∥b∥2. (5.2)

55

Remark 5.5.1. The expression of the residual from (5.2) does not require to compute yℓ.
It is then possible to carry out the GMRES iteration without explicitly solving the least
squares problem, but just by finding Rℓ, unless the residual is small enough. Then, the
actual solution is computed only at last step.

5.6 Convergence

GMRES produces a sequence of decreasing residuals (in norm), which is already a re-
markable property. However, if the convergence to zero is slow, we may need a large
number of iterations to actually find an approximate solution of Ax = b.
This section is dedicated to characterizing the convergence speed, in terms of bounding

the norm of the residuals rGMRES
ℓ = b − AxGMRES

ℓ . We will link the convergence speed
to some spectral properties of A, and this will guide us in transforming the problem to
accelerate convergence.

Theorem 5.6.1. Let xℓ be the sequence generated by GMRES for the linear system
Ax = b, without breakdown. Then, rℓ = Axℓ − b satisfies

∥rℓ∥2 = ∥Axℓ − b∥2 = min
p(x)∈Pℓ

p(0)=1

∥p(A)b∥2,

where Pℓ è is the set of polynomial of degree at most ℓ.

Proof. Recall that xℓ is chosen to minimize the residuals ∥Ax− b∥2 among all x ∈
Kℓ(A, b) and, by definition of Krylov subspace, we may write xℓ = q(A)b with q(x)
polynomial of degree at most ℓ− 1. We then obtain

−rℓ = b−Axℓ = b−Aq(A)b = (I −Aq(A))b = p(A)b,

where p(x) = 1 − xq(x), a generic polynomial of degree ℓ with p(0) = 1. The claim
follows by the minimizing property of GMRES.

An expression of the form p(A)b can be linked, for normal matrices, to the value of
p(x) over the spectrum of A. The same holds for diagonalizable matrices, although a
constant κ2(V) appears in the bound.

Corollary 5.6.2. Let A be diagonalizable with eigenvector matrix V ; then, GMRES
produces a sequence of residuals {rℓ}ℓ≥1 satisfying

∥rℓ∥2 ≤ κ2(V) · min
p(x)∈Pℓ

p(0)=1

max
λ∈Λ(A)

|p(λ)| · ∥b∥2.

Proof. The proof follows by diagonalizing A, showing that p(A)b = V p(D)V −1b, then
using Theorem 5.6.1 and computing the spectral norm.

Exercise 5.6.3. Find an upper bound for the convergence of GMRES for a normal matrix
A with eigenvalues enclosed in B(1, ρ) = {|z − 1| ≤ ρ} for some ρ < 1.

56

These results show that the optimal situation for GMRES convergence is having (at
least for normal matrices) the eigenvalues clustered around λ = 1 (or any other non-zero
value, since the problem is scale invariant). This is clearly not always the case, and is
the reason preconditioning techniques have been developed to modify linear systems to
fall back into this case.

5.7 Spectral sets

Bounding the size of ∥p(A)b∥2 when A is a non-normal matrix can be challenging: the
result from Corollary 5.6.2 can be rather loose when the condition number κ2(V)≫ 1.

In this particular case, one solution is to introduce sets larger than the spectrum where
to measure the effect of the polynomial, and reduce the constant. This idea leads to the
definition of K-spectral sets.

Definition 5.7.1. A set S is a K-spectral set for a matrix A and a given norm ∥·∥ if,
for any analytic function f(z) over S it holds

∥f(A)∥ ≤ K ·max
z∈S
|f(z)|.

Let us make a few examples:

• Whenever A is normal, then the spectrum of A is a 1-spectral set for the spectral
norm.

• If A is diagonalizable, then the spectrum is a κ2(V)-spectral set, again for the
spectral norm.

Finding more general spectral sets that work well with non-normal matrices is not an
easy task. We report the following theorem, whose proof requires advanced tools (and
some effort), and is therefore omitted from these notes.

Theorem 5.7.2 (Crouzeix-Palencia). Let A be a matrix, and W(A) its field of values,
defined as

W(A) := {x∗Ax | ∥x∥2 = 1}.

Then, W(A) is a (1 +
√
2)-spectral set for A with the spectral norm.

The key observation is that now the constant does not depend on the matrix under
consideration, whereas the set does. Clearly, this result can be used to limit the size of
∥p(A)b∥2 on specific examples.

There are a few limitations to this approach:

1. Computing explicitly W(A) is not an easy task. A few properties can be proven
(the set is convex and contains the spectrum), but the set is difficult to handle
both theoretically and numerically.

2. There is no guarantee that 0 ̸∈ W(A) even when A is invertible. Whenever this
happens, all upper bounds for ∥p(A)b∥2 will be equal to 1 (why?), and therefore
are useless to understand the convergence of GMRES.

57

5.8 GMRES preconditioning

The previous results on the convergence of GMRES tell us that, when the spectrum of A
has eigenvalues that are not clustered away from 0, we may expect a slow convergence.
The idea of preconditioning is to solve this issues by modifying the original problem
using the degrees of freedoms that we have at our disposal. Indeed, note that for any
invertible matrices M1,M2 we have

Ax = b ⇐⇒ M−1
1 AM−1

2 M2x =M−1
1 b,

and by setting y := M2x we can solve the linear system Ãy = b̃ with Ã := M−1
1 AM−1

2

and b̃ = M−1
1 b, and only the recovering x = M−1

2 y. If we choose M1 and M2 wisely we
may end up with a problem with much better convergence properties of the original one.
We remark that it is not necessary to explicitly compute M−1

1 AM−1
2 , but instead to

efficiently implement the action of this matrix on a vector:

v 7→M−1
1 AM−1

2 v =M−1
1 (A(M−1

2 v)).

With a smart ordering of the arithmetic operations, this is equivalent to a matrix mul-
tiplication with A, and two linear systems with M1 and M2. To summarize, our aim is
to select M1,M2 in a way that:

• M−1
1 AM−1

2 has good convergence properties with GMRES; in practice, this often
means that the preconditioned matrix is well conditioned, or a low-rank perturba-
tion of a well-conditioned matrix.

• The linear systems with M1 and M2 can be solved efficiently.

A well-chosen preconditioner will make GMRES converge in less iterations, but at a
higher cost per iteration. Finding the right balance is critical to an efficient implemen-
tation.
Often, M1 is called left preconditioner, whereas M2 is called a right preconditioner.

We will now simplify the notation assuming that M1 = M and M2 = I (i.e., we only
apply the left preconditioner). Most considerations that we make will be easy to transfer
to the other case.
Note that using a right preconditioner does not change the residual, whereas using a

left preconditioner does not need to recover the solution at the end.

5.8.1 Diagonal preconditioners and splitting methods

The easiest preconditioner is obtained by taking M = D, where D is the diagonal of A.
Whenever A is diagonally dominant, we may expect the diagonal to “tell most of the
story”, and therefore this to be a good choice. This choice is sometimes called a Jacobi
preconditioner, and has a link with splitting methods. We briefly recall that, given an
additive partitioning A =M −N with detM ̸= 0, we have

Ax = b ⇐⇒ Mx = Nx+ b ⇐⇒ x =M−1Nx+M−1b ⇐⇒ x = Px+ q,

58

where P = M−1N and q = M−1b. This suggests to set up the fixed point iteration
x(k+1) = Px(k)+q, which gives the so-called splitting methods, and is globally convergent
whenever ρ(P) < 1. In this context, the Jacobi method is obtained by choosing M as
the diagonal of A, and Gauss-Seidel by taking M to be the upper or lower triangular
part.
All choices of that provide a convergence splitting (i.e., for which ρ(P) < 1) work as

a good preconditioner, as the next results shows.

Lemma 5.8.1. Let A = M − N an additive splitting of A with detM ̸= 0 and
ρ(M−1N) = ρ < 1. Then, the M−1A has eigenvalues in B(1, ρ) and the GMRES
method for Ax = b preconditioned with M satisfies rℓ ∼ O(ρℓ).

Proof. We write
M−1A =M−1(M −N) = I −M−1N.

Hence, M−1A has 1− λ as eigenvalues, where λ ∈ Λ(M−1N) ⊆ B(0, ρ).

In practice, the preconditioner may be better than what is predicted by Lemma 5.8.1,
since GMRES can “deflate” a few eigenvalues after a few steps. Hence, if the spectrum
of M−1A has a few eigenvalues of the form 1− λ with |λ| ≈ ρ, and the rest much closer
to 1, we can expect an acceleration of the convergence speed after a few steps. This
phenomenon is known as the superlinear convegence of Krylov methods, and is never
found in fixed point iterations.

5.8.2 Sparse approximate inverse

The preconditioner should ideally approximate M−1 ≈ A−1 as well as possible, while
being still easy to apply. A class of effective choices for sparse matrices A is trying to
find M such that

M = arg min
M−1∈S

∥I −AM−1∥F ,

where S is the class of a matrices with a specific structure. A common choice is to take
S the set of matrices with the same sparsity structure of A. The choice of the Frobenius
norm here is not by chance, since we have

∥I −AM−1∥2F =

n∑
j=1

∥ej −AM−1ej∥
2

2.

Hence, we can determine the columns of M−1 independently by solving a constrained
least-square problem. In particular, let us fix the index k, and denote that index sets Rj
and Cj as the rows that are non-zero in Aej and the rows that can be non-zero inM−1ej ,
respectively. Then, M−1ej can be determined by solving the least-square problem

min ∥A(Rj , Cj)wj − ej(Ij)∥2,

and then by setting M−1ej equal to wj in the rows Cj , and zero-elsewhere. In practice,
this is a very small least square problem, which is cheap to solve.

59

5.9 Symmetric problems: Lanczos and the conjugate gradient

In the real symmetric case, when A = AT ∈ Rn×n, the Arnoldi procedure is considerably
simplified. The GMRES and FOM methods are usually given a specific name: MINRES,
and Conjugate Gradient (CG)5.

5.9.1 Lanczos iteration and MINRES

By rewriting the Arnoldi iteration when A = AT we observe thatHℓ = HT
ℓ , and therefore

it is both upper and lower Hessenberg. In other words, Hℓ is tridiagonal. For this reason,
we refer to the matrix as Tℓ, and the Arnoldi relation (that takes the name of Lanczos
relation) takes the form

AVℓ = VℓTℓ + βℓvℓ+1e
T
ℓ , Tℓ =

α1 β1

β1
. . .

. . .
. . .

. . . βℓ−1

βℓ−1 αℓ

 .
Since the upper triangular part of Tℓ is mostly zero, most of the scalar products required
to carry on the Arnoldi iteration are known a priori, and are zero. This means that
Avℓ is already orthogonal to v1, . . . , vℓ−2 by construction, without the need of a full
reorthogonalization procedure.
Using this observation, we may reformulate the iteration as follows:

v1 = b/β0, β0 = ∥b∥2, βℓvℓ+1 = Avℓ − αℓvℓ − βℓ−1vℓ−1.

We remark that:

• After ℓ steps, the term βℓ−1 is known from the previous computations. To make
the first step well-defined, we set v0 = 0.

• αℓ is computed as αℓ = vTℓ Avℓ, or alternatively as αℓ = vTℓ (Avℓ − βℓ−1vℓ−1). The
two forms are equivalent because vTℓ vℓ = 1, but the latter can be preferred for
stability reasons.

• βℓ is determined by computing βℓ := ∥Avℓ − αℓvℓ − βℓ−1vℓ−1∥2.

Once Tℓ is known, it is possible to proceed by solving the linear system by projecting
and minimizing the residual, as in the GMRES case. This gives the MINRES method.
The cost is reduced because of the special structure of Tℓ, and this is the method of
choiced for symmetric but indefinite problems.
However, when A is symmetric and positive definite (SPD), the same property holds

for Tℓ, and this guarantees the applicability of the FOM method, which in this context is
called Conjugate Gradient (CG). It turns out that this method is particularly appealing
in the SPD case, and deserves to be ananlyzed in detail.

5Historically, the theory for the symmetric case has been developed before the unsymmetric ones, and
that’s the reason for the G in GMRES, which stands for Generalized.

60

5.9.2 The Conjugate Gradient method

From now on, we assume that A is SPD. Recall that FOM computes at every step the
solution of the linear system Tℓyℓ = ∥b∥2e1, and then this is used to define the solution
vector xℓ := Vℓyℓ.
Since A is SPD, the same holds for Tℓ for any ℓ, thanks to the Courant-Fischer theorem.

Indeed, the eigenvalues of Tℓ are enclosed in [λmin(A), λmax(A)]. Making use of these
observations, we have the following explicit expression for the solution vector at step ℓ:

xℓ = VℓT
−1
ℓ

∥b∥2
0
...
0

 .
We now show how we can rephrase the solution linking xℓ and xℓ−1. This will trasform
the CG method into a method that, at each step, directly updates the current solution
vector.
Consider an LU factorization Tℓ = LℓUℓ without pivoting. This exists and can be

stably computed thanks to the fact that Tℓ is SPD. Then,

Tℓ = LℓUℓ =

1
λ1 1

. . .
. . .

λℓ−1 1

η1 β1

. . .
. . .
. . . βℓ−1

ηℓ

 ,
where βi are exactly the super and sub-diagonal entries of Tℓ. By reading the above
matrix relation we have

λj = βj/ηj , ηj+1 = αj+1 − λjβj , η1 = α1.

Hence, the LU factorization may be computed during the Lanczos iteration by using
these recurrence relations, instead of recomputing it from scratch at every step. We
remark that xℓ can be rewritten in a different form as

xℓ = VℓU
−1
ℓ︸ ︷︷ ︸

Pℓ

L−1
ℓ e1 =

p1 . . . pℓ

z1...
zℓ

 .
The columns of Pℓ are well defined because Uℓ and therefore also U−1

ℓ are upper trian-
gular. This allows us to write xℓ as an update of xℓ−1 as

xℓ = xℓ−1 + zℓpℓ. (5.3)

From the relation PℓUℓ = Vℓ we may derive the identity

ηℓpℓ = vℓ − βℓ−1pℓ−1.

61

We now want to exploit (5.3) to update the solution vector xℓ at each step. To achieve
this, we need relations to obtain zℓ and pℓ from the previous iterations. We will reach
this goal by appropriately characterizing some orthogonality properties of vℓ and pℓ.
For the former vectors, we already know that they are orthogonal with respect to the
canonical scalar product. The latter satisfy an orthogonality property guaranteed by
the following result.

Theorem 5.9.1. The vectors p1, . . . , pℓ are A-orthogonal, and therefore P Tℓ APℓ is a
diagonal matrix.

Proof. Note that we may rewrite P Tℓ APℓ as follows:

P Tℓ APℓ = U−T
ℓ V T

ℓ AVℓU
−1
ℓ = U−T

ℓ TℓU
−1
ℓ = U−T

ℓ Lℓ.

The above matrix is lower triangular, and at the same time symmetric, and therefore is
diagonal.

Let us summarize the information on the CG method:

• The residuals rℓ are orthogonal (the method is the symmetric equivalent of FOM).

• The vectors pℓ are A-orthogonal, thanks to Theorem 5.9.1

We shall now describe a sequence of steps that allow to derive xℓ. We now make use of
the notation rℓ = b−Axℓ for the residual, since this sign choice is the most convenient.
We have

xℓ = xℓ−1 + zℓpℓ =⇒ rℓ = rℓ−1 − zℓApℓ
By imposing the orthogonality condition rTℓ rℓ−1 = 0 we get:

zℓ =
rTℓ−1rℓ−1

rTℓ−1Apℓ
,

that allows us to compute xℓ and rℓ from rℓ−1. The definition of pℓ implies that vℓ is
a linear combination of pℓ e pℓ−1, and therefore the same holds for rℓ−1 (thanks to the
properties of FOM). Up to an appropriate rescaling of the vectors pj , we obtain

pℓ = rℓ−1 + ξℓ−1pℓ−1, (5.4)

and we may rewrite the relation for zℓ as follows

zℓ =
rTℓ−1rℓ−1

pTℓ Apℓ
, (5.5)

where we have exploited the A-orthogonality of the pj . We note that, formally, this
is just a rescaled version of the previous relation, with different zjs. We now need to

62

determine the vectors pℓ, by finding ξℓ. To this aim, we use once more Equation (5.4)
for ℓ+ 1, imposing the A-orthogonality with pℓ, that yields the following

ξℓ = −
pTℓ Arℓ

pTℓ Apℓ
=

1

zℓ

rTℓ rℓ

pTℓ Apℓ
=

rTℓ rℓ

rTℓ−1rℓ−1
,

where we have used the definition of zℓ and the relation Apℓ =
rℓ−1−rℓ

zℓ
. Combining

these relations, we obtain the classical formulation of the conjugate gradient, reported
in Algorithm 7. This is extremely simple to implement, and has excellent numerical
properties.

Algorithm 7

1: procedure CG(A, b, ϵ)
2: x0 ← 0
3: r0 ← b, p1 ← b/∥b∥2
4: for ℓ = 1, . . . , k do

5: zℓ ←
rTℓ−1rℓ−1

pT
ℓ Apℓ

6: xℓ ← xℓ−1 + zℓpℓ
7: rℓ ← rℓ−1 − zℓApℓ
8: ξℓ ← rTℓ rℓ

rTℓ−1rℓ−1

9: pℓ+1 = rℓ + ξℓpℓ
10: if ∥rℓ∥2 ≤ ϵ then
11: return xℓ
12: end if
13: end for
14: end procedure

5.9.3 CG as an optimization method

The conjugate gradient method can be interpreted as an optimization method applied
to the quadratic objective function

Φ(x) =
1

2
xTAx− xT b, x ∈ Rn.

If A is positive definite, then the function Φ(x) is convex and has a unique global
minimum, which corresponds to the critical point where the gradient ∇Φ(x) = xTA−bT
vanishes, which is the solution to the linear system.
Since A is SPD, we may define a norm induced by the scalar product associated with

A: ∥x∥A :=
√
xTAx. The conjugate gradient iteration has the property of minimizing

the error with respect to this norm at each step.

Theorem 5.9.2. The approximate solution xℓ given by the conjugate gradient method
at step ℓ minimizes the error with respect to the norm ∥·∥A over Kℓ(A, b), that is

xℓ = arg min
x̃∈Kℓ(A,b)

∥x̃− x∥A.

63

Proof. For this condition to be verified, it is sufficient to verify that the gradient of
Ψ(x̃) = (x̃−x)TA(x̃−x) is orthogonal to the search space Kℓ(A, b), where x is the exact
solution of the linear system. We may write:

∇Ψ(x̃) = 2(x̃− x)TA = 2(x̃TA− bT),

which is orthogonal to Kℓ(A, b) if and only if x̃ = xℓ, thanks to the residual orthogonality
property of CG.

The previous result allows us to state an analogue of Theorem 5.6.1, but in terms
of the error and not the residual, and with respect to ∥·∥A. We can still obtain a
characterization of the residual, but with respect of ∥·∥A−1 .

Theorem 5.9.3. The solution xℓ given by step ℓ of CG satisfies

∥x− xℓ∥A = ∥b−Axℓ∥A−1 = min
p∈Pℓ
p(0)=1

∥p(A)b∥A−1 .

Proof. Let us note that the A-norm of the error at step ℓ can be written as follows:

∥x− xℓ∥2A = (A−1b− q(A)b)TA(A−1b− q(A)b)
= bT (I −Aq(A))A−1(I −Aq(A))b = ∥p(A)b∥2A−1 ,

where we have used xℓ = q(A)b and p(x) = 1 − xq(x). With an argument analogue
to Theorem 5.6.1 we conclude that CG minimizes the norm ∥·∥A−1 of the residual with
respect to all polynomials of degree ℓ with constant term equal to 1. It is readily verified
that it holds

∥Axℓ − b∥A−1 = ∥xℓ − x∥A,

which gives also the second part of the thesis.

The derivation of CG can be presented in a different way by building a gradient
descent method that optimizes Φ(x), and then imposing the A-orthogonality of the
descent directions pℓ. This has been the historical derivation of the method, and the
reason why we call pℓ descent directions, and zℓ step-length. However, the presentation
as a Krylov method allows for much easier proofs of convergence.

Remark 5.9.4. It is useful to remark once more the advantage in the symmetric setting:
the solution of the linear system does not require to store the entire basis Vℓ, thanks for
the short recurrence relation. This can make an enormous different for large problems,
in order to avoid memory issues. Nonsymmetric problems of similar sizes can only be
handled with restart techniques when using GMRES, which may degrade the convergence
of the method.

64

5.9.4 Characterization of the convergence

Understanding the convergence of GMRES in an explicit manner, instead of the rep-
resentation ∥rℓ∥2 = ∥p(A)b∥2 given by Theorem 5.6.1 is not trivial, in particular for
matrices far from normality.
For the conjugate gradient that operates on symmetric matrices allows to explicitly

state the rate of convergence in terms of the condition number of A. We report the
following result without proof, for which we refer to [6, Cap. 6.11.3].

Theorem 5.9.5. Let A be a real SPD matrix, and xℓ the sequence of approximate
solutions built by CG for Ax = b. Then, it holds

∥x− xℓ∥A ≤ 2

(√
κ2(A)− 1√
κ2(A) + 1

)ℓ
∥x∥A.

5.9.5 Preconditioning in the symmetric case

Similarly to GMRES, preconditioning is often essential to make CG practical. If the
original problem has a large condition number, then the standard iteration is bound to
converge slowly, as per Theorem 5.9.5. However, even assuming a good preconditioner
M such that M−1A ≈ I is available, it cannot be applied as it is, since it would lead to
the loss of the symmetric structure.
We shall now make the reasonable assumption that the chosen preconditioner M is

symmetric and positive definite. Then, we can find a matrix L such that M = LLT ,
which is its Cholesky factorization.

Exercise 5.9.6. Show that the standard procedure for computing the LU factorization
can be slightly tuned to produce a Cholesky factorization if M is SPD, and that this
factorization is unique if we require the diagonal entries to be positive.

Instead of applyingM as a left or right preconditioner, we can make use of its Cholesky
factor to split it in a symmetric way, and consider the equivalent linear system

Ax = b ⇐⇒ L−1AL−TLTx = L−1b.

The matrix L−1AL−T is the preconditioned matrix, and is still symmetric and positive
definite. If M−1A ≈ I, the same holds for L−1AL−T .

In principle, this approach works exactly as the standard preconditioning for GMRES.
However, we make the following observation. Even though M−1A is not symmetric, it
is self-adjoint with respect to a non-standard scalar product, the one induced by M . In
fact, we have for any vector v

⟨M−1A, v⟩M = (M−1A)TMv = AM−TMv = vTA = vTMM−1A = ⟨v,M−1A⟩M .

We shall now use this idea to avoid explicitly involving the Cholesky factor —which
would be often expensive to compute—, and end up working with just the matrix M .

65

We now rewrite the CG for the matrix L−1AL−T , with initial vector L−1b. We have
the following updates, according to Algorithm 7:

zℓ ← (rTℓ−1rℓ−1)/(p
T
ℓ L

−1AL−T pℓ)

xℓ ← xℓ−1 + zℓpℓ

rℓ ← rℓ−1 − zℓL−1AL−T pℓ

ξℓ ← (rTℓ rℓ)/(r
T
ℓ−1rℓ−1)

pℓ+1 ← rℓ + ξℓpℓ

This modified method would not compute the solution x, but instead LTx. Hence, it is
reasonable to pre-multiply the xℓ by L

−T , to make sure that the final limit is the sought
solution. By setting x̃ℓ := L−Txℓ, p̃ℓ := L−T pℓ, we get

zℓ ← (rTℓ−1rℓ−1)/(p̃
T
ℓ Ap̃ℓ)

x̃ℓ ← x̃ℓ−1 + zℓp̃ℓ

rℓ ← rℓ−1 − zℓL−1Ap̃ℓ

ξℓ ← (rTℓ rℓ)/(r
T
ℓ−1rℓ−1)

p̃ℓ+1 ← L−T rℓ + ξℓp̃ℓ

We still have two appearances of L, which we can remove by defining a preconditioned
residual r̃ℓ := L−T rℓ, which finally gives equations involving only A and M :

zℓ ← (r̃Tℓ−1Mr̃ℓ−1)/(p̃
T
ℓ Ap̃ℓ)

x̃ℓ ← x̃ℓ−1 + zℓp̃ℓ

r̃ℓ ← r̃ℓ−1 − zℓM−1Ap̃ℓ

ξℓ ← (r̃Tℓ Mr̃ℓ)/(r̃
T
ℓ−1Mr̃ℓ−1)

p̃ℓ+1 ← r̃ℓ + ξℓp̃ℓ

This idea can be used (with a few variants, see [6]) to implement the preconditioned CG
without the need to explicitly determine L. The iteration can indeed by interpreted as
a CG iteration with a non-standard scalar product, the one induced by M .

5.10 Computing eigenvalues and eigenvectors with Arnoldi

The Krylov methods considered in the previous sections allow to solve large scale lin-
ear systems; however, they can be adapted to computing selected eigenvalues for large
matrices.
Clearly, whenever A is large, there is no hope of computing all the eigenvalues at a

low cost (in general). As in the setting for the solution of linear system, we assume to
know A implicitly by its action as a matrix-vector product. Then, we can consider the
following prototype of algorithm

66

• For increasing ℓ, we perform the Arnoldi iteration and build a sequence of upper
Hessenberg matrices H1, H2, . . . ,Hℓ.

• For each of these, we compute eigenvalues and eigenvectors.

The eigenvalue of Hℓ are called Ritz values, and the eigenvectors Ritz vectors. We claim
that such eigenvalues are approximation of (some) eigenvalues of the large matrix A.
Indeed, it turns out that Hℓ solves a minimization problem that resembles the one for
GMRES or CG.
Before giving the formal result, in Theorem 5.10.2, we prove the following Lemma.

Lemma 5.10.1. Let q(z) be any polynomial of degree at most ℓ, and AVℓ = VℓHℓ +
hℓ+1,ℓvℓ+1e

T
ℓ the Arnoldi relation without breakdown with initial vector b. Then, we have

q(A)b =

{
Vℓq(Hℓ)e1∥b∥2 if k < ℓ

Vℓq(Hℓ)e1∥b∥2 + qℓhℓ+1,ℓvℓ+1e
T
ℓ H

ℓ−1
ℓ e1∥b∥2 if k = ℓ.

Proof. Using the linearity of q(z) as a sum of monomial, we can reduce the statement
to proving that, for each k < ℓ, the following identity holds:

Akb = VℓH
k
ℓ e1∥b∥2.

By repeatedly using the Arnoldi relation to Akb = AkVℓe1∥b∥2 we obtain

Akb = VℓH
k
ℓ e1∥b∥2 =

(
Ak−1VℓHℓ + hℓ+1,ℓA

k−1vℓ+1e
T
ℓ

)
e1∥b∥2

=
(
Ak−2VℓH

2
ℓ + hℓ+1,ℓA

k−2vℓe
T
ℓ Hℓ + hℓ+1,ℓA

k−1vℓ+1e
T
ℓ

)
e1∥b∥2

...

=

(
VℓH

k
ℓ + hℓ+1,ℓ

k−1∑
i=0

Aivℓ+1eℓH
k−i−1
ℓ

)
e1∥b∥2.

We now note that eTℓ H
k−i−1
ℓ has at most the last k entries different from zero, and since

we assumed that k < ℓ, this implies that eℓH
k−i−1
ℓ e1 = 0 for all i = 0, . . . , k − 1.

Hence, the result follows by expanding the last inequality.

Theorem 5.10.2. Let Hℓ be the upper Hessenberg matrix from the Arnoldi process for A
without breakdown, starting from an initial vector b. Then, the characteristic polynomial
p(λ) = det(λI −Hℓ) satisfies the following minimization problem:

min
p∈Pℓ
pℓ=1

∥p(A)b∥2.

Proof. The minimum problem can be rewritten in constrained least squares form:

min
p∈Pℓ
pℓ=1

∥p(A)b∥2 = min
y∈Rℓ
∥Aℓb− Vℓy∥2.

67

In the above identity, we are using that p(A)b has the form Aℓ + q(A)b where q(x) is
any polynomial of degree at most ℓ − 1, and the two equivalent characterizations for a
vector to belong to a Krylov subspace:

v ∈ Kℓ(A, b) ⇐⇒ v = Vℓy for some y

⇐⇒ v = q(A)b for some q(x) with degree at most ℓ− 1.

Hence, the optimality condition can be imposed by asking the orthogonality p(A)b ⊥
Kℓ(A, b). Since p(A)b ∈ Kℓ+1(A, b) we may rewrite this condition as follows, for j =
1, . . . , ℓ:

v∗j p(A)b = 0 ⇐⇒ v∗jVℓp(Hℓ)e1∥b∥2 = 0,

where we have used Lemma 5.10.1 and the fact that v∗j vℓ+1 = 0.
Since v∗jVℓ = e∗j we get

p(A)b ⊥ Kℓ(A, b) ⇐⇒ e∗jp(Hℓ)e1 = 0, j = 1, . . . , ℓ.

Thanks to Hamilton-Cayley’s theorem if p(z) is the characteristic polynomial of Hℓ then
p(Hℓ) = 0, which allows to conclude.

Theorem 5.10.2 yields some information on the approximated eigenvalues computed
by the Arnoldi iteration.
The Ritz values implicitly define the characteristic polynomial of Hℓ, which approx-

imates the one of A in the Hamilton-Cayley sense: even if it is not possible to have
p(A) ≡ 0 (because of the lower degree), we try to at least make it as small as possible.
We then make a few remarks:

• The Ritz values are invariant for translations and scaling, in the sense that the
process applied to µA+ ηI yields Ritz values scaled and translated with the same
factors.

• It is reasonable to assume that the largest eigenvalues (in modulus) are approxi-
mated well: their linear factors in the characteristic polynomials are the ones who
contribute the most to make p(A) small.

• If b lives in an invariant subspace, only the spectrum of A restricted to that invari-
ant subspace can be determined through this method.

To give a more formal analysis of the convergence, we refer to the book by Saad
[6]. The construction also allows to approximate eigenvalues in particular regions of
the spectrum, for instance close to a certain point σ, by replacing A with (A − σI)−1;
These two matrices have the same eigenvectors, and the latter has eigenvalues of the
form (λi − σ)−1. These are large if and only if λi is close to σ. This idea is known as
Inverse Arnoldi Iteration, or shift-and-invert Arnoldi.

68

6 Sparse direct solvers for symmetric positive definite linear
systems

In the context of solving linear systems with Krylov subspace iterative methods, we have
seen that it is crucial to have under control the conditioning of the problem or to have
at our disposal a good preconditioner. However, preconditioning is an art and often
requires additional insights into the problem at hand.

On the other hand, many ill-conditioned linear systems coming from the discretization
of PDEs are highly sparse, i.e., the coefficient matrix has only O(n) non zero entries.
This is due to the fact that differential operators are local, e.g., the value of the derivative
at a certain location depends only on the value of the function in the neighbourhood
of that location. As we are going to see in this section, sparsity can sometimes be
exploited to design efficient direct methods. The so-called sparse direct solvers are
based on suitable modifications of the LU/Cholesky factorization, trying to minimize
the amount of required memory and operations. Such factorization-based methods are
only possible for an explicitly given sparse matrix A and their success depends on the
pattern of sparsity in a complicated way. Nevertheless, these methods can be very
successful and represent the methods of choice for dealing with finite differences (FD)
and finite element discretizations (FE) of 2D PDEs. In these notes we restrict to the
case where A is symmetric positive definite; this assumption simplifies the discussion and
avoids the need for pivoting to ensure numerical stability. The general case is beyond
the scope of this course as it is more complicated; indeed, pivoting and preservation of
sparsity are in conflict and a compromise has to be made, e.g., use non-optimal pivot
elements.

6.1 Cholesky factorization of positive definite matrices

Let us start by proving that any symmetric positive definite matrix admits a symmetric
analogue of the LU decomposition, known as the Cholesky decomposition.

Lemma 6.1.1. A ∈ Rn×n is symmetric positive definite if and only if exists a lower
triangular invertible matrix L ∈ Rn×n such that A = LLT .

Proof. If A = LLT then A is clearly symmetric and for every x ∈ Rn \ {0} we have

xTAx = xTLLTx = ∥LTx∥22 ≥ 0.

For the other implication, we proceed by induction on n. For n = 1, A is a positive real
number and the claim follows by choosing L as its square root. For n > 1, let us observe
that the symmetric positive definite matrix A can be factorized as

A =

[
a11 aT1
a1 A22

]
=

[√
a11
a1√
a11

In−1

]
︸ ︷︷ ︸

L1

[
1

A22 −
a1aT1
a11

][√
a11

aT1√
a11

In−1

]
, (6.1)

69

where A22 −
a1aT1
a11
∈ R(n−1)×(n−1) is again symmetric and positive definite as it can be

seen as a principal submatrix of L−1
1 AL−T

1 , which is symmetric and positive definite.

Using the induction step, we can claim that A22 −
a1aT1
a11

= L2L
T
2 for a certain lower

triangular matrix L2. Then, conclude by writing

A = L1

[
1

L2L
T
2

]
LT1 = L1

[
1

L2

] [
1

LT2

]
LT1

and setting L = L1

[
1
L2

]
.

Definition 6.1.2. The matrix L and the product LLT of Lemma 6.1.1 are said the
Cholesky factor and the Cholesky factorization of A, respectively.

Iteratively repeating the main step in the proof of Lemma 6.1.1, i.e. equation (6.1),
leads to Algorithm 8 for computing the Cholesky factorization. The Matlab function
chol can be used to compute the Cholesky factorization. Attempting to compute the
Cholesky factorization also happens to be the best way to check whether a given symmet-
ric matrix is positive definite; in case of a non positive definite argument one encounters
a negative diagonal entry during the process.

Algorithm 8 Cholesky factorization of A

1: procedure Chol(A)
2: for i = 1, . . . n− 1 do
3: lii =

√
aii

4: li+1:n,i = ai+1:n,i/lii
5: ai+1:n,i+1:n ← ai+1:n,i+1:n − li+1:n,il

T
i+1:n,i

6: end for
7: return L = (lij)
8: end procedure

6.2 Sparsity and Cholesky factorization

A natural question is whether a sparse symmetric positive definite matrix A has a sparse
Cholesky factor L. In general, the Cholesky factor will not inherit the sparsity pattern
of the matrix A. In Figure 1 and Figure 2 are reported two examples, involving arrow-
head matrices, that have extreme behaviors: in the first the sparsity pattern is exactly
preserved while, in the second, the matrix L is fully populated under the main diagonal.
Since the sparsity pattern of the first example can be obtained by applying the same

row and column permutation on the matrix of the second example, we may learn an
important lesson: The ordering of the matrix can have a tremendous impact on the
sparsity of its Cholesky factor. This effect is well captured by the so-called envelope of
the matrix A.

70

0 20 40 60 80 100

nz = 298

0

10

20

30

40

50

60

70

80

90

100

0 20 40 60 80 100

nz = 199

0

10

20

30

40

50

60

70

80

90

100

Figure 1: An arrowhead matrix A with arrow pointing to bottom right corner (left) and
its Cholesky factor (right).

0 20 40 60 80 100

nz = 298

0

10

20

30

40

50

60

70

80

90

100

0 20 40 60 80 100

nz = 5050

0

10

20

30

40

50

60

70

80

90

100

Figure 2: An arrowhead matrix A with arrow pointing to top left corner (left) and its
Cholesky factor (right).

71

Definition 6.2.1. Let A ∈ Cn×n, we call the envelope of A the subset of indices of
positions defined as

env(A) = {(i, j) : Ji(A) ≤ j ≤ i}, Ji(A) := min{j : aij ̸= 0}.

Note that the envelope of a matrix with the sparsity pattern displayed in Figure 2
contains all entries in lower triangular part. In contrast, the envelope of a matrix with
the sparsity pattern displayed in Figure 1 only contains the entries on the main diagonal
and in the last row. Indeed, we can prove that the envelope of a matrix is inherited by
its Cholesky factor.

Theorem 6.2.2. Let A = LLT ∈ Rn×n be a symmetric positive definite matrix, then

(i, j) ̸∈ env(A) ⇒ lij = 0.

Proof. We proceed by induction on n. For n = 1 the claim is trivially true. For n > 1,
looking at Algorithm 8 we see that l:,1 has the same non zero entries of a:,1. Moreover,
we observe that

ah1 = 0 ⇒ Jh(A22 −
a1a

T
1

a11
) = Jh(A22).

Using the induction step we have that

L =

[√
a11
a1√
a11

L2

]
, L2L

T
2 = A22 −

a1a
T
1

a11
,

where Jh(L2) ≥ Jh(A22), for all h such that ah,1 = 0. The latter implies env(L) ⊆ env(A)
that is equivalent to the claim.

One can easily modify Algorithm 8 such that it only computes the entries of L within
the envelope. This reduces the cost from 1

3n
3 +O(n2) operations to

1

2

n∑
k=1

ωk(A)
2 + lower-order terms

operations for the factorization, where ωk(A) = |{j ≤ k : (k, j) ∈ env(A)}|.

6.3 Fill-in and basic concepts from graph theory

Given a Cholesky factorization A = LLT , indices (i, j) that satisfy lij ̸= 0 but aij = 0 are
called fill-in. From Theorem 6.2.2 we already know that fill-in can only take place within
the envelope of A. In the following, we will discuss orderings of A that aim to reduce
the envelope and the fill-in. On the matrix level, a symmetry-preserving reordering of
the columns and rows of A corresponds to P TAP with a permutation matrix P . It is
conceptually simpler to phrase such a reordering and its effect on the sparsity pattern

72

in terms of the associated graph. Given a symmetric matrix A ∈ Rn×n, we define an
undirected graph G = (V,E) with vertices V = {v1, . . . , vn} and

(vi, vj) ∈ E ⇔ aij ̸= 0.

Then P TAP simply corresponds to a renumbering of the vertices. We will now study
the effect of Algorithm 8 on the graphs associated with the matrices generated during
the factorization.

Example 6.3.1. Let A ∈ R6×6 with the following sparsity pattern:

× 0 × × × 0
0 × × 0 0 ×
× × × 0 0 0
× 0 0 × 0 0
× 0 0 0 × 0
0 × 0 0 0 ×

1

2

3

4

5

6

In terms of the graph, the first step of Algorithm 8 corresponds to introducing edges
between vertices that are indirectly connected by a path of length 2 via v1. Afterwards,
all edges attached to v1 and the vertex v1 itself are eliminated:

× 0 0 0 0 0

0 × × 0 0 ×
0 × × × × 0
0 0 × × × 0
0 0 × × × 0
0 × 0 0 0 ×

2

3

4

5

6

The construction in the example above can be easily generalized. Let G(1) be the
graph associated with A. More generally, let G(k) denote the graph associated with

the submatrix A
(k)
k:n,k:n before the kth step of Algorithm 8 is executed. Then G(k+1) is

obtained from G(k) by introducing edges between vertices that are indirectly connected
by a path of length 2 via vk, and then eliminating vk along with its attached edges. The
memory requirement for storing the Cholesky factor L is then given by

n+

n−1∑
k=1

degG(k)(vk),

where the degree deg of a vertex is defined as the number of attached edges.

73

6.4 Ordering strategies

Algorithms for factorizing a sparse matrix typically consist of two phases. In the first
phase, the sparsity pattern of A is analyzed and a suitable reordering aiming at a re-
duced fill-in is computed (this is often referred to as the symbolic phase). The second
phase consists of a sophisticated implementation of Algorithm 8, restricting its storage
and computations to the predicted sparsity pattern of L. In the following, we discuss
three quite different strategies for the first phase: Reverse Cuthill-McKee, Approximate
minimum degree, and nested dissection.

6.4.1 Reverse Cuthill-McKee

The Cuthill-McKee (CM) and Reverse Cuthill-McKee (RCM) aim at minimizing the
bandwidth of a sparse matrix in a heuristic way. To attain this goal, an ordering is
produced in which neighboring vertices obtain positions close together. The choice of

Algorithm 9 Cuthill-McKee ordering

1: procedure CM(G,E, v)
2: Initialize FIFO queue F = (v)
3: k ← 1
4: while F ̸= ∅ do
5: Remove first element v from F and assign number k to v
6: Let W contain all unnumbered vertices in adj(v) = {w ∈ V : (v, w) ∈ E}
7: Put all vertices from W into F in ascending order of degree.
8: k ← k + 1
9: end while

10: end procedure

starting vertex v for Algorithm 9 is important. Preferably, v should be a peripheral
vertex, that is, there exists a path of maximal length starting from v. A (nearly) pe-
ripheral vertex can be found from repeated breadth first searches. If we let PCM denote
the permutation matrix associated with the numbering produced by Algorithm 9 then
the corresponding reordered matrix takes the form P TCMAPCM. It turns out that a bet-
ter ordering is obtained when reversing the numbering obtained from Algorithm 9, the
so-called reverse Cuthill-McKee ordering (RCM). We indicate the corresponding permu-
tation matrix with PRCM. It has been shown in the literature that we always have

|env(P TRCMAPRCM)| ≤ |env(P TCMAPCM)|,

so the RCM procedure is usually preferred; the latter is implemented in the Matlab
command symrcm.

6.4.2 Approximate minimum degree

While RCM is cheap and still quite popular, the obtained reordering is usually far from
optimal. One problem with RCM is that it aims at minimizing the bandwidth, while

74

the ultimate target is to minimize the fill-in and not the bandwidth. Both minimiza-
tion problems are NP-hard. A greedy approach to minimize the fill-in is presented in
Algorithm 10. Note that G(k) refers to the elimination graphs introduced in Section 6.3,
with the notable difference that the vertices to be eliminated are selected dynamically.
Algorithm 10 is quite costly, in particular due to the need to evaluate the degrees of

Algorithm 10 Minimum degree ordering

1: procedure MD(G,E)
2: Set G(1) = (V,E)
3: for k = 1, . . . , n do
4: Select vertex v of G(k) with minimum degree and assign number k to v.
5: Obtain G(k+1) by eliminating the vertex v and the associated edges as de-

scribed in Section 6.3.
6: end for
7: end procedure

all vertices in G(k). A cheaper, nearly equally effective alternative has been developed,
called the Approximate Minimum Degree (AMD) ordering. It is available in the Matlab
command symamd.

6.4.3 Nested dissection

A graph separator S for an undirected graph G partitions the set of vertices V into three
disjoint sets

V = V1 ∪ V2 ∪ S,

such that no edges exist that connect vertices in V1 with vertices in V2. If we use a
numbering such that the vertices in V1 appear first, then the vertices in V2, and then
the vertices in S, this means that the matrix takes the form

A =

AV1,V1 0 AV1,S
0 AV2,V2 AV2,S

AS,V1 AS,V2 AS,S

 . (6.2)

By Theorem 6.2.2, the Cholesky factor will inherit the zero off-diagonal block. The
cardinality of the separator S should be small and preferably the cardinalities of V1 and
V2 should be balanced. Recursively applying the dissection (6.2) leads to Algorithm 11.
The art in Algorithm 11 lies in selecting a “good” separator. This is relatively easy for
problems where the underlying geometry is known, for example in FE discretizations
of 2D or 3D PDEs. Then repeated geometric subdivision of the computational domain
generally leads to a good choice of separators. For problems without an underlying
geometry, graph clustering techniques can be used to determine good separators.

75

Algorithm 11 Nested dissection ordering

1: procedure NestedDissection(G,E)
2: Select a “good” separator S and corresponding partitioning V = V1 ∪ V2 ∪ S
3: Determine a numbering of the vertices within V1 by applying the algorithm re-

cursively to the subgraph of G associated with V1
4: Determine a numbering of the vertices within V2 by applying the algorithm re-

cursively to the subgraph of G associated with V2
5: Put vertices in V1 first (according to the numbering from Step 3), vertices in V2

second (according to the numbering from Step 4), and vertices in S third.
6: end procedure

7 Matrix functions

Together with linear systems and eigenvalue problems, the evaluation of matrix functions
is an evergreen topic in numerical linear algebra. Indeed, a lot of applications involve
the problem of evaluating a matrix function or a matrix function times a vector. For
instance, the solution of a system of linear differential equations with constant coefficients
of the form {

u̇(t) = Au(t)

u(0) = u0 ∈ Rn
, A ∈ Rn×n,

is given in terms of the matrix exponential as u(t) = etAu0. Other examples of functions
of interest are

• log(A);

•
√
A;

• Aα, α ∈ (0, 1);

• sign(A).

This section is meant to be a brief excursion around the rigorous definitions of matrix
functions and the methods for their computations; we refer to the excellent book by
Higham [2] for a complete overview.

7.1 Equivalent definitions of f(A)

Given a square matrix A ∈ Cn×n and a scalar function f : Ω → C with Ω ⊆ C, the
matrix function f(A) is again an n×n matrix. When f ≡ p happens to be a polynomial

p(z) = p0 + p1z + · · ·+ pmz
m

we can define the matrix function p(A) by simply replacing z with A:

p(A) = p(z) = p0I + p1A+ · · ·+ pmA
m,

76

where the power Aj is understood as multiplying j times A with itself. We can extend
this definition to functions that are analytic on the whole C, by replacing A in their
scalar series expansion:

f(z) =

∞∑
j=0

cjz
j ⇒ f(A) =

∞∑
j=0

cjA
j .

However, we would like to have a definition that does not require analiticity on the entire
complex plane and also provides an insight on how to compute or approximate f(A).
Moreover, we would like to preserve 2 properties that hold in the polynomial case:

(i) The eigenvalues of f(A) are f(λj) (where λj are the eigenvalues of A),

(ii) The eigenvectors of f(A) coincides with those of A.

In view of the target properties, in the following, we will always assume that f is analytic
on Ω and that Ω ⊆ C contains the eigenvalues of A. Note that, when A is diagonalizable,
properties (i) and (ii) already determine the expression of f(A); indeed, if A = V DV −1

with D = diag(λ1, . . . , λn), then f(A) is necessarily given by

f(A) = V f(D)V −1, f(D) =

f(λ1) . . .

f(λn)

 . (7.1)

In the non diagonalizable case, things are slightly more complicated and it is instructive
to look at the behavior of the simplest functions, i.e. the powers zj , applied to the
simplest non diagonalizable matrix, i.e. the Jordan block. Direct computations show
that

A =

[λ 1
. . .

. . .
1
λ

]
, A2 =

λ2 2λ 1

. . .
. . .

. . .
. . .

. . . 1

. . . 2λ
λ2

 , A3 =

λ3 3λ2 3λ 1
. . .

. . .
. . .

. . .
. . .

. . .
. . . 1

. . .
. . . 3λ
. . . 3λ2

λ3

 , . . .

and this suggests the following definition.

Definition 7.1.1 (Jordan canonical form). Let A = V JV −1, with J = diag(J1, . . . , Js),
be the Jordan canonical form of A ∈ Cn×n, then f(A) := V f(J)V −1 where

f(J) =

f(J1) . . .

f(Js)

77

and if Ji is an h× h Jordan block associated with the eigenvalue λ, then

f(Ji) :=

f(λ) f ′(λ) . . . f (h−1)(λ)

(h−1)!

. . .
. . .

...
. . . f ′(λ)

f(λ)

 .

We remark that, the above definition is only based on the evaluation of the function
f and some of its derivatives at the eigenvalues of A; more precisely, two functions that
coincide on the eigenvalues of A, up to the right amount of derivatives yield the same
matrix function, when applied to A. This inspires an alternative definition based on the
Hermite polynomial approximation of the function f .

Definition 7.1.2 (Hermite interpolant). Let indλi(A) denote the size of the largest
Jordan block associated to the eigenvalue λi of the matrix A. Then, we define f(A) =
q(A) where q(z) is the Hermite polynomial of f(z) that verifies

dq

dzj
(λi) =

df

dzj
(λi), j = 0, . . . , indλi(A),

for every eigenvalue λi of A.

Remark 7.1.3. Note that, in the above definition the polynomial changes whenever the
argument matrix A changes. In particular, we are not saying that the matrix function
associated with f is a matrix polynomial.

Exercise 7.1.4. Leveraging that f(A) coincides with evaluating a certain matrix poly-
nomial in A, prove that for any invertible matrix S ∈ Cn×n, we have S−1f(A)S =
f(S−1AS).

Finally, a third definition is based on the Cauchy integral formula for functions that
are holomorphic in a certain domain of C.

Definition 7.1.5 (Contour integral). Let Γ be a closed curve (possibly made of several
connected components) contained in Ω and encircling the eigenvalues of A. Then

f(A) :=
1

2πi

∫
Γ
f(z)(zI −A)−1dz

where the integral is applied component-wise to the argument matrix.

Remark 7.1.6. The definition based on the Cauchy integral formula is sometimes com-
bined with quadrature formula for the integral, to provide approximation of f(A).

Remark 7.1.7. The three definitions (Jordan canonical form, Hermite interpolant and
contour integral) are equivalent, see [2] for the proof, and coincide with the matrix
power series expansion when f(z) has a single expansion on the whole Ω (for example
this happens in the case f(z) = ez).

78

Exercise 7.1.8. Prove the following properties concerning the matrix exponential:

(i) ∂etA

∂t = AetA.

(ii) If two n× n matrices A,B verify AB = BA then eA+B = eA · eB = eB · eA.

(iii) eA is always invertible and (eA)−1 = e−A.

(iv) det(eA) = etrace(A).

7.2 The Schur-Parlett algorithm for computing f(A)

On first sight, the most natural way to compute f(A) seems to consist of diagonalizing
A and using (7.1). However, this leads to loss of accuracy if the matrix V is not par-
ticularly well-conditioned. Unless A is Hermitian (or, more generally, a normal matrix)
approaches based on diagonalization should be avoided. For a general matrix function
f(A), the Matlab command funm is based on first computing the Schur form

A = QTQ∗,

with an upper triangular matrix T and unitary matrix Q, and exploiting the relation
f(A) = Qf(T)Q∗. This way, the initial problem boils down to evaluating F = f(T),
i.e., the matrix function of an upper triangular matrix. From the definition of matrix
functions, it is clear that F is also upper triangular and its diagonal entries are given by

F11 = f(T11), F22 = f(T22), . . . Fnn = f(Tnn).

The elements in the strictly upper triangular part are determined from the fact that F
and T must commute, FT = TF . For instance in the 2× 2 case

T =

[
T11 T12

T22

]
, F =

[
F11 F12

F22

]
,

looking at the entry (1, 2) of the matrices FT and TF yields the relation

T11F12 + T12F22 = F11T12 + F12T22 ⇒ F12 = T12
F11 − F22

T11 − T22
.

In the general case, resolving this relation column by column gives Algorithm 12, which
requires the diagonal entries (that is, the eigenvalues) of T to be mutually distinct. If
this condition is not satisfied or if some diagonal elements are close to each other (in
a certain sense), a block variant of the algorithm should be used. This block variant
of Algorithm 12 is state-of-the-art for evaluating general functions of small to medium-
sized matrices. Nevertheless, it is rarely used in practice. For nearly all functions of
practical interest, specialized methods are the preferred choice. For example, the Matlab
commands expm and logm are based on a totally different class of methods, the so-called
scaling and squaring algorithm, see Higham’s book for the details.

Remark 7.2.1. If we denote by cf the cost of one evaluation of f then the asymptotic
cost of the Schur-Parlett algorithm is O(n3 + cfn).

79

Algorithm 12 The Schur-Parlett algorithm for computing f(A).

1: procedure SchurParlett(A)
2: Compute the Schur form A = QTQ∗

3: for i = 1, . . . n do
4: Fii = f(Tii)
5: end for
6: for j = 2, . . . n do
7: for i = j − 1, j − 2 . . . 1 do
8: Fij = Tij

Fii−Fjj

Tii−Tjj +
∑j−1

k=i+1(FikTkj − TikFkj)
9: end for

10: end for
11: return QFQ∗

12: end procedure

7.3 The Arnoldi method for computing f(A)b

The inverse of a matrix, i.e. A−1, can be viewed as the matrix function corresponding
to f(z) = z−1. With this perspective, we can look at computing a quantity of the form
f(A)b, for a vector b, as a generalization of solving a square system of linear equations.
Then, it is quite natural to extend FOM for approximating f(A)b.

Suppose that we have run ℓ steps of the Arnoldi method to generate an orthonormal
basis for Kℓ(A, b). This yields the Arnoldi decomposition

AVℓ = VℓHℓ + hℓ+1,ℓvℓ+1e
∗
ℓ .

Then the approximation considered by the Arnoldi method for f(A)b (the extension of
FOM for linear systems) is

fℓ := ∥b∥2Vℓf(Hℓ)e1 ≈ f(A)b.

The latter requires the evaluation of the ℓ × ℓ matrix function f(Hℓ), that can be ad-
dressed by Algorithm 12 with cost O(ℓ3) in the typical case, i.e., when evaluating the
scalar function f is not the dominant cost. Similarly to FOM, we can link the conver-
gence of the method to the best polynomial approximation of the function f(z) over
spectral sets for A. In particular, in the Hermitian case we have the following result.

Theorem 7.3.1. Let A ∈ Cn×n be a Hermitian matrix with eigenvalues contained in
the interval [α, β] ⊂ R and let f : Ω→ C be analytic with [α, β] ⊂ Ω. Then

∥f(A)b− fℓ∥2 ≤ 2∥b∥2 min
p(z)∈Pℓ−1

max
z∈[α,β]

|f(z)− p(z)|.

Proof. Since Vℓ is an orthogonal basis for {p(A)b : deg(p) ≤ ℓ− 1} we have that

VℓV
∗
ℓ b = b, VℓV

∗
ℓ p(A)b = p(A)b

80

for any polynomial p(z) of degree at most ℓ − 1. Then, in view of Lemma 5.10.1,
p(A)b = ∥b∥2Vℓp(Hℓ)e1, and therefore the approximation returned after ℓ steps of the
Arnoldi method is exact if the f(z) is a polynomial of degree at most ℓ− 1. Therefore,
for any polynomial p(z) of degree at most ℓ− 1:

∥f(A)b− fℓ∥2 = ∥f(A)b− p(A)b+ ∥b∥2Vℓp(Hℓ)e1 − fℓ∥2
≤ ∥f(A)b− p(A)b∥2 + ∥b∥2∥p(Hℓ)e1 − f(Hℓ)e1∥2
≤ ∥b∥2 (∥f(A)− p(A)∥2 + ∥p(Hℓ)− f(Hℓ)∥2)

= ∥b∥2
(

max
z∈Λ(A)

|f(z)− p(z)|+ max
z∈Λ(Hℓ)

|f(z)− p(z)|
)

≤ 2∥b∥2 max
z∈[α,β]

|f(z)− p(z)|,

where, in the last inequality, we have used that both Λ(Hℓ) and Λ(A) are contained in
[α, β]. Taking the minimum over p yields the claim.

A bound for a general matrix A can be retrieved by combining the argument used for
the proof of Theorem 7.3.1 with Crouzeix-Palencia’s result (Theorem 5.7.2).

Corollary 7.3.2. Let A ∈ Cn×n and let f : Ω→ C be analytic with W(A) ⊂ Ω. Then

∥f(A)b− fℓ∥2 ≤ 2(1 +
√
2)∥b∥2 min

p(z)∈Pℓ−1

max
z∈W(A)

|f(z)− p(z)|.

Proof. The proof is analogous to the one of Theorem 7.3.1, apart from using Crouzeix-
Palencia’s bound and the property of the numerical range: W(Hℓ) = W(V ∗

ℓ AVℓ) ⊆
W(A).

81

References

[1] James W. Demmel. Applied numerical linear algebra. SIAM, 1997.

[2] Nicholas J Higham. Functions of matrices: theory and computation. SIAM, 2008.

[3] Roger A. Horn and Charles R. Johnson. Matrix analysis. Cambridge university press,
1985.

[4] Roger A. Horn and Charles R. Johnson. Topics in Matrix analysis. Cambridge
university press, 2012.

[5] Tosio Kato. Perturbation theory for linear operators, volume 132. Springer Science
& Business Media, 2013.

[6] Yousef Saad. Iterative methods for sparse linear systems. SIAM, 2003.

[7] David S. Watkins. The transmission of shifts and shift blurring in the QR algorithm.
Linear algebra and its applications, 241:877–896, 1996.

82

	Introduction
	Nonsymmetric eigenvalue problems
	Perturbation theory for eigenvalue problems
	Backward error analysis
	The power method
	Convergence rate of the power method
	The Hermitian case
	Subspace iteration
	Simultaneous iteration
	The QR iteration
	Shifting and deflation
	Hessenberg reduction
	Computing eigenvectors and invariant subspaces
	Double shifting and the real Schur form

	Symmetric eigenvalue problems and the SVD
	Tridiagonal QR iteration
	Courant-Fischer's theorem and interlacing properties
	The divide-and-conquer method for Hermitian tridiagonal matrices
	Handle deflation
	Modified Newton iteration (Additional, not done during the lectures)
	Computing the eigenvectors stably

	The Singular Value Decomposition
	Existence and uniqueness
	Properties of the SVD
	The Eckart-Young-Mirsky theorem
	Computing the SVD

	Least squares problems
	Normal equations for overdetermined full rank least squares problems
	Solving least squares problem using the QR and the SVD

	Underdetermined and rank-deficient systems

	Krylov methods for linear systems
	Introduction to Krylov subspaces
	The Arnoldi iteration
	The full-orthogonal method (FOM)
	GMRES
	Solving the least squares GMRES problem
	Convergence
	Spectral sets
	GMRES preconditioning
	Diagonal preconditioners and splitting methods
	Sparse approximate inverse

	Symmetric problems: Lanczos and the conjugate gradient
	Lanczos iteration and MINRES
	The Conjugate Gradient method
	CG as an optimization method
	Characterization of the convergence
	Preconditioning in the symmetric case

	Computing eigenvalues and eigenvectors with Arnoldi

	Sparse direct solvers for symmetric positive definite linear systems
	Cholesky factorization of positive definite matrices
	Sparsity and Cholesky factorization
	Fill-in and basic concepts from graph theory
	Ordering strategies
	Reverse Cuthill-McKee
	Approximate minimum degree
	Nested dissection

	Matrix functions
	Equivalent definitions of f(A)
	The Schur-Parlett algorithm for computing f(A)
	The Arnoldi method for computing f(A)b

